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CHAPTER XI

BOUNDARY LAYER THEORY FUNDAMENTALS

§11.1. The Bouniary Layer Concept

It has been established experimentally that viscosity has a

significant effect on gas flow only in a very thin layer near the

surface of submerged bodies. Beyond the limits of this layer, the

influence of viscosity can be neglected. The fluid layer adjacent

to the submerged solid body, in which the internal fri -ion forces

are of the same order as the inertia forces, is termed the boundary

layer.

Drag, lift, aerodynamic heating (at supersonic speeds), and so

on depend to a considerable degree on the flow structure in the

boundary layer. The air particles in the boundary layer are retarded

under the action of the forces of adhesion with the solid surface

and the viscous forces, which transfer this retardation from the

wall some distance into the flow. The tangential stresses resulting

from the viscous forces reduce the velocity of the air particles and

cause them to rotate, forming vortices. Study of the flow structure

in the boundary layer permits correct analysis of such important

aerodynamic phenomena as flow separation from submerged bodies and

FTD-HC-23-720-71 ±



vortical wake formation behind a body, and also makes it possible

to determine the air friction force on the body surface. Analysis
of the flow in the boundary layer reduces to the solution of a

system of complex differential equations.

Theoretical analyses of the boundary layer were initiated by
Prandtl in 1904 and extended by Karman, Pohlhausen, Millikan, Blasius,

Schlichting, and others. A large number of studies of SoViet scien-

tists including L. S. Leybenzon, N. Ye. Kochin, A. A. Dorodnitsyn,
V. V. Golubev, L. G. Loytsyanskiy, A. P. Mel'nikov, K. K. Fedyayevskiy,

and others have been devoted to further development of boundary layer

theory.

Soviet aerodynamicists have carried out several important theo-

retical and experimental investigations of the boundary layer and

have developed efficient wing and fuselage forms having minimal drag.

Let us examine the flow of a viscous fluid about a flat plate

of length L (Figure 11.1). Experiment shows that the fluid particles

contacting the plate surface are completely retarded. As we move

away from the plate, the flow velocity increases, approaching asympto-

tically the theoretical velocity corresponding to inviscid fluid

flow past the plate. In the case in question this is the freestream

velocity V,,.

V .

Figuire 11.1. Schefiatic representation of boundary
layer on a flat plate

FTD-IBC-23-720-71 2



Usually we take as the boundary layer thickness 6 that (quite

small) distance from the body surface at which the velocity V x

becomes equal to the outer flow velocity or differs from the latter

by some small aitount, for example by 1%. Other definitions of the

boundary layer thickness are also frequently used.

j If the submerged plate is sufficiently long, the flow strdcture

in the boundary layer at different distances from the leading edge

of the plate is different. Near the leading edge the flow within

the boundary layer is laminar. Such a boundary layer is termed

laminar. As we move away from the leading edge, the flow in the

boundary layer becomes turbulent (Figure 11.2.). In the turbulent

boundary layer the motion is turbulent except for a thin viscous

sublayer immediately adjacent to the body surface. The distribution

of the longitudinal velocity component in laminar and turbulent

boundary layers is shown in Figure 11.3. We see from the fia;re

that more rapid decrease of the velocity near the wall is observwd

in the turbulent boundary layer in Pomparison with the laminar.

000

I 2j oo o - - e

Figure 11.2. Boundary layer Figure 11.3. Comparison of
structure with transition from velocity profiles in laminar
laminar to turbulent regime: and turbulent boundary

1 -- laminar layer; 2 - transi- layers:

tion point; 3 - turbulent layer; 1 - laminar layer; 2
4 - viscous sublayer; 5 - plate turbulent layer

FTD-HC-23-720-71 3



The boundary layer on a submerged body has approximately the

same st:-ucture as that on a flat plate. Downstream of the submerged

body the boundary layers formed on the upper and lower surfaces come

together and form the vortical wake (Figure 11.4). which "diffuses"

with increasing distance from the body, and the velocities in this

wake equalize and approach the freestream velocity.

V.

2

44

Figure 11,4. Schematic of viscous fluid flow
past a body:

1 -laminar layer; 2 - turbulent layer; 3-
vortical wake; 4 - transition zone

§11.2. Integral Relation for Steady Incompressible

Boundary Layer Flow

Let us examine fluid flow over a curvilinear surface of small

curvature. In this case it is convenient to take the Ox coordinate

axis to be curvilinear, locating it on the wetted surface along the

flow (Figure 11.5). We shall apply the momentum theorem to the

incompressible fluid within the elewentary boundary layer segment

ABCD, of length dx and width equal to unit length, located at the

distance x from the coordinate origin. The fluid mass enterng

through section AB during the time dt, with velocity which is

variable across tne section, and the fluid mass leaving through

section CD equal, respectively,

FTD-hC-23-720-'li 4



d Vdy and dt( 'VxdI+dX± I'VAY9)

Hence the difference of the

fluid masses entering and

leaving will be C

The projection on the Ox

axis of the momentum of the

fluid entering through section - x dx X

AB is

di(? V2dy Figure 11.5. Derivation of
integral relation for boundary
layer in incompressible fluid

and the projection of the

momentum of the fluid leaving

through section CD (considering this quantity a function of x) is

diQ (V2 dy +dx -Vdy)

On the basis of mass conservation, a fluid mass must enter ABCD

through the upper boundary AC which is equal to the difference of

the fluid masses leaving through section CD and entering through

section AB, i.e.,
a

oQddx- V. dy

This fluid brings into ABCD momentum equal to

QVo di dx Vf dy
0

FTD-HC-23-720-71 5



where V 0  is the velocity at the outer edge of the boundary layer.

Thus, the projection on the Ox axis of the increment during

the time dt of the momentum of the fluid which is in the volume ABCD

at the time t will be

Qddx z.V Vd sV (a)

We consider the momentum introduced into the volume ABCD during the

time dt to be negative, and that leaving the volume to be positive.

Now we calculate the projection of the sum of the impulses of

the external forces acting during the time dt on the fluid within

the elementary volume ABCD. The projections on the Ox axis of the

external forces (pressure forces) acting on the faces AB, AC, and

DC will be, respectively,

2 Ox / ax /
+. " dV (P+-- dx) (p,, + !- 8+A

d6
where s- is the sine of the angle between the face AC and the

Ox axis.

Neglecting small quantities of higher order and assuming that

the projection on the Ox axis of the pressure of the wall element BD

on the fluid equals zero, we find the sum of the projections of the

pressure forces on the Ox axis

ad8 -(L ax (+ d&)= + p d& -,p4-p d8-

-d P d.,-- dx.
ox aX Ox

The projection on th: Ox acis of the pressure force impulse will be

t LPdx di (b)

FTD-HC-23-720-71 6



The impulse of the friction force applied to the face BD,

whose area is dx 1 1, is

-rdxdt (c)

where T0 - is the friction force per unit area. 4

Equating the sum (a) to the sum of the expressions (b) and (a)

and cancelling dxdt, we obtain

QL VVdy-gV.±- V.dy=---- " -11

This is then the integral relation for steady incompressible

boundary layer flow. Assuming in view of stationarity that in f
(11.1.) all quantities depend only on x, the partial derivatives

can be replaced by total derivatives

Q Vidy--QVo-LVdu=--a r. (11.2)

The quantities V0d d- , and p are considered known, since if V is0dx 0

known from the solution of the potential flow problem or from experi-

ment we can find 9R from the Bernoulli equation.dx

Thus, in this integral relation there are three unknowns:

Vx, 6, and T0. Therefore we need two more relations to solve the

problem, for example,

V.=V (Y) and "to=-to(6)

FTD-HC-23-720-71 7



§11.3. Use of Integral Relation to Calculate

Tiaminar Flat Plate Boundary Layer and Drag

Let us examine the simplest case - longitudinal flow about a

flat plate, since information on the boundary layer thickness and

frictional drag for this case can be used for the approximate calcu-

lation of the thin profile and certain other profiles.

The integral relation (11.2) simplifies somewhat for the flat

plate. At the upper edge of 'he boundary layer of such a plate

Vo= V,-const.

Then it follows from the Bernoulli equation (5.5) that p. : const,

and the integral relation takes the form

dX i dxj(13

The velocity distribution across the boundary layer section can be

found approximately if we represent the function Vx = f(y) in poly-

nomial form, for example the second-order polynomial

V.-a+by+cg' (11.4)

where a, b, and c -are constants defined from the boundary

conditions.

For a flat plate the boundary conditions will be:

1) at the lower edge of the boundary layer, i.e., at the wall

for F-O V8-O

2) at the upper edge of the boundary layer

for Y-6 VX-V.

FTD-HC-23-720-71 8



3) the friction forces are zero (T 0) at the upper edge of

the boundary layer and, consequently, on the basis of the Newton

formula (T=p -) for y = 6
y $a.=

we find the values of the coefficients from these boundary conditions
a=0; b=-M; c=- (11.5)

Then the velocity distribution across the boundary layer section is

expressed by the formula

v=v. -- (11.6)

We use the Newton ,',rmula to find T0

s . (11.7)

From (11.7) and (11.6) we obtain the formula for the wallfriction stress

o(1.8)

Thus, we have obtained two additional relations (11.6) and

(11.8), which together with the integral relation (11.3) make it

possible to solve the problem of the boundary layer on a flat plate.

After finding the two integrals in (11.3), with account for

(11.6) and (11.8), we obtain

QiV~dY=Q(V.. (2' y2 '-2%dy=-!
2 W.8

TD-V2 (2 M-2 20 9

FTD-HC-23--720-71 9



Substituting these expressions into (11.3), we obtain a

differential equation in the form

or, after separating the variables,

U8.15 
.dx

Integrating this equation, we obtain

Va.15 .X+C (11.9)
gym

Setting 6 =0 for x =0 (boundary layer thickness zero at the lead-

ing edge of the plate), we find that C = 0. From (11.9) we find the

boundary layer thickness

or

&=5,4 V X(11.10)
o~o~*~vV.,

This formula can be written as

X V

8=5,48-,T where Re,=-
)1Rex

Substituting this value of 6 into (11.8), we find

To=O,365 (11)

The exact solution of the boundary layer problem, obtained by

Blasius by integrating the differential equations of motion of a

viscous fluid, yields the following expressions for 6 and To

.5,2 , ',332 (11.12)

FTD-HC-23-720-71 10



Comparing the approximate relations (11.10) and (11.11) with

the exact expressions, we conclude that their agreement is good.

We see from (11.10) that the boundary layer thickness is directly

proportional to the square root of the kinematic viscosity v and
plate length x, and inversely proportional to the square root of the

velocity at the outer edge of the boundary layer, which in the

present case equals the freestream velocity V.

The boundary layer thickness and friction stress are shown as

functions of x in Figure 11.6.

Now let us calculate the

frictional resistance force Xfr

acting on one side of a flat

plate of width b. The friction

force on an elementary area will

be Tbdx. The total frictional
resistance force on a plate of

length z is Figure 11.6. Variation of
friction stress and boundaxy

blayer thickness along length
X Toedx of plate

Substituting here the value of T from (11.12), we obtain

X,,=o,664 bYV.z

Multiplying the numerator and denominator by 1/ pI , introducing the

Reynolds number and considering that S = bl, we find

1 3 V2
X ,P: : _ S e V2 ( 1 1 -1 I 3 )

1 2

or

V2X=C-2S in

FTD-1C-23-720--71 11



where

T (11.15)

The quantity cx friS the friction coefficient for a flat plate

with laminar boundary layer. Thus, the larger Re, the smaller is

this coefficient.

§11.4. Use of Integral Relation to Calculate the Turbu-

lent Flat-Plate Boundary Layer and Drag

The integral relation (11.2) is also applicable to the turbu-

lent boundary layer. However, the two additional conditions (11.6)

and (11.8) are not suitable in this case, since the friction in the

turbulent boundary layer obeys other and more complex governing

relations. An exact theory has not yet been developed for tu.rbulent

flows; however, it has been established experimentally that for tur-

bulent flow the velocity distribution in the boundary layer can be

expressed in power-law form

V,.V" .- ) ( Ii.16 )

Experiment shows that for outer flow velocities which do not

exceed half the speed of sound we can t&ke n = 7. The magnitude of

the coefficient n increases with increase of the flow velocity. To

find the turbulent friction stress To, we can use a formula obtained

by analogy with pipe and flat-plate flows

A

r.=0,022NV.2( 4 (11.17)

FTD-HC-23-720-71 12



where
Re a V .&

" (11.18)

Here we must bear in mind that an experimental relation is

used for the friction stress in the turbulent fluid flou regime in

a circular pipe. Calculations using (11.16) and (-11.17, will be

sufficiently exact for comparatively small values of Re S.

Solving (11.3) with account for (11.16) and (11.17), we find

the turbulent boundary layer thickness

8=O3 X (11.19)

or

8=0,37R--) X (11.20)

and the frictional drag

v2X,= T~s (11.21)

where

00 1o02 (11.22)

Under actual conditions some region near the leading edge of

the plate is occupied by a laminar boundary layer. The turbulent

boundary layer is located downstream of the laminar zone. If we
assume that transition from laminar to turbulent flow takes place

instantaneously, then we can speak of a transition point rather than

a transition zone. The location of tne transition prLnt depends on

several factors, primarily freestream turbulence and surface rough-

ness. Surface roughness disturbs the laminar flow stability, and

therefore the greater the roughness, the closer the transition point

FTD-HO-23-720-71 13



_ ... . .

will be to the leading edge. Increased freestream turbulence also
favors early transition to turbulent flow in the boundary layer.

In addition to these factors, the location of the transition

point also depends on the pressure distribution over the surface

of the wing, which in turn depends on the wing geometric character-

istics. Laminar flow is maintained only with negative pressure

gradients along the streamlines. Therefore, in practice the boundary
layer can be laminar on a profile only ahead of the maximal suction

point. Laminar flow is also disturbed in the case of marked breaks

in the contour of the profile, at locations of slots, protuberances,

e.-3 so on.

If a flat plate is aligned parallel to the freestream velocity

vector, the pressure along the streamlines above the plate will be

constant (zero-pressure-gradient flow). In this case the point of

transition of the laminar flow to turbulent is determined by the

critical Reynolds number Re cr , which lies in the range 2 . 105 -

5 1 105, depending on the plate roughness and freestream turbulence.

If part of the surface is covered by a laminar boundary layer

and part by a turbulent layer, such a boundary layer is called mixed

and the magnitude of the flat-plate friction drag coefficient for

zero-pressure-gradient flow is found from the approximate formula

Cs P ('Re-Re,+37RepjF (11.23)

For Re = 0, (11.23) takes the form (11.22) for the turbul-nt

boundary layer, while for Recr = Re it takes the form (11.13) for

the laminar boundary layer.

Surface roughness has a significant effect on frictional drag

in the case of turbulent flow in the boundary layer. The influence

of roughness protuberances and Reynolds number on the frictional

drag coefficient of a rough plate is shown in Figure 11.7. The

FTD-HC-23-720-71 l4
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I0 40 7,9 8- 401

IFigure 11.7. Frictional drag coefficient of rough
plate as function of Re and surface roughness

sloping lines correspond to the values of c x rfor a constant value

. k Vbl , 'k

(of the parameter Re (for more detail see [56]), where Re =V

I while the horizontal lines are for a constant value of the relative
roughness, equal to the ratio of the roughness protuberance height k

to the plate chord b.

We see from the curves that the drag increases with increase of

the roughness; for a definite value of the roughness, beginning~ with

some value of Re the drag coefficient is independent of Re. In this

case the frictional drag force Is proportional to the velocity

squared. This drag regime is termed the quadratic or seif-similar

regime, since modeling of the friction forces in the case of the

quadratic drab law is prov'ded by geometric similarity alone and

does not require equality of the Reynolds numbers for the full-scale

and model conditions.

Finally, it follows from the curves that the drag increase

owing to roughness in comparison with the drag of a smooth plate

FTD-HC-23-720-7. 15



increases with increase uf Re. Therefore, smooth surfaces are

Varticularly important for high-speed airplanes.

§11.5. Boundary Layer Heating at High Gas Flow

Velocities

IAt the lower edge of the boundary layer, i.e., at the

wetted surface of the body, the air particles are brought to rest

(V = 0). In the absence of heat exchange between these particles and

k the surrounding medium,the particle temperature will be equal to the

stagnation temperature, which according to (9.3) is

for air with k = 1.4

7'0-T. (I+0,M) (11.24)

where T and M. are the freestream temperature and Mach number.

In reality, in the absence of heat exchange between the boundary

layer, the surrounding medium, and the wetted surface, the actual

gas temperature at the wetted surface, which is termed the recovery

temperature and is denoted by Tr' differs somewhat from the theo-

retical value.

For a flat plate the recovery temperature can be found from the

formula

where r - is the temperature recovery factor, characterizing how

close the retardation in the boundary layer is to adia-

batic retardation, for which r 1.
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For approximate calculations we can take r = 0.90 for the turbulent

boundary layer and r = 0.85 for the laminar boundary layer.

We see from (11.25) that the recovery temperature at a thermally

insulated wall increases markedly with increase of M.

§11.6. Use of an Integral Relation to Calculate the

Boundary Layer on a Curved Surface

In the case of flow past a curved surface, the velocity at the

outer edge of the boundary layer is variable; therefore the pressure
in the boundary layer varies along the flow, i.e., the longitudinal

pressure gradient dp/dx is not equal to zero. In calculating the

flow in the boundary layer over a curved surface, it is necessary to

use the complete integral relation (11.2)

dXi XY~ dx~ dX

We note that the following equality holds

d(VV 1 .vA'd Y+ dVOVd

hence

0xV d~ OV -- aV'V.

0

Moreover, we have from the Bernoulli euqation (5.5)

dp W V VV
dx dx O

ThenIi P QVoVJ0 d
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With account for these relations (11.2) takes the form

eL V4VO-V)dy+rV (VO-V)dy=TO (11.26)

dx~

The quantity V0 , which is the velocity at the outer -dge of the

selected boundary layer cross section, is independent of y and there-

fore may be taken outside the integral sign.

The integral in the second term of the left side of this equa-

tion is the reduction of the mass flow rate through the boundary

layer cross section of height 6 and width equal to unit length owing

to the influence of viscosity in comparison with the ideal fluid

flow rate through the same section. This integral is represented

graphically in the form of the

area ObaO (shaded region in

4 Figure 11.8). The quotient ob- Y1

tained by dividing this integral f

by the magnitude of the velocity

at the outer edge of the boundary

layer yields a linear quantity

equal to

(4 (11.27)

which is called the displacement Figure 11.8. Geometric
determination of displace-

thickness. The displacement ment thickness

thickness is numerically equal to

the height of a rectangle equal

in area to the area ObaO in Figure 11.8 and having the base V0.

The integral in the first term of the left side of (11.26) is

the magnitude of the momentum change in the boundary layer owing

to the influence of viscosity. Therefore the quotient obtained by

dividing it by the velocity V0, h~v*.ng the linear dimension
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is called the momentum loss thickness.

Introducing the quantities 6 and 6 , we reduce (11.26) to

the form

Q-4 (V028*) +pV;VOa=o

and

QV2-+2eVoV' " u+ QVoV V=To (11.29)

Dividing this expression by pV 2' we obtain the integral relation
0

in dimensionless form
11b" V0  "

0 ((11.30)

or

* + -*5 l(2+H)= (1.31)

where

H= -  (11.32)

The integral relation in the form (11.31) with the parameters

6 and 6 , termed the Karman equation or the momentum equation,

is used to calculate the boundary layer on curved profiles. Equa-

tion (11.31) is applicable for both laminar and t-,,rbulent boundary

layers, since no assumptions were made concerning the concrete ex-

pression for the tagential stress in terms of the quantities

6 and 6

In the approximate solution of problems using (11.2), the

shape of the velocity profile in the boundary layer is usually
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-f

specified and then this equation is used to find the friction stress

at the wetted surface, and also the boundary layer thickness 6,
displacement thickness 6*, and momentum loss thickness 6

We note that the boundary layer thickness is somewhat greater

than the displacement thickness 6 , and the latter in turn is

greater than the momentum loss thickness 6 ,I.e., 6 >6 >6

We shall show this using the laminar bounda~y la.yer as an example.

To establish the connection between 6 and 6 , we substitute

the value of V /V from (11.6) into (11.27). Then we obtainx0

t 2 3
0

Consequently, the displacement thickness in the laminar boundary

layer cn a flat plate amounts to about one third of the boundary

layer chickness.

During flow over a curved surface, for example a wing surface,

qualitatively new phenomena may occur which are not possible in fhe

case of zero-pressure-gradient flow. At the leading edge of the

profile the tangential velocity for potential flow equalf. zero, and

the pressure is maximal in accordance with the Bernoulli formula.

For points lying downstream the velocity increases and reaches a

maximum at point m; the pressure decreases cor-espondingly and

reaches a minimum at point m (Figure 11.9). The fluid particles in

the boundary layer ahead of point m travel, with a negative gradient

x, while those behind this point will travel with a positive gra-

dient. As the fluid particles enter the region downstream of point

m,.theyare accelerated by the positive pressure gradient directed

opposite the freestream velocity. Thus, near the solid surface

the medium is retarded as it encounters the increasing pressure.
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Figure 11.9. Schematic of flow with boundary layer
separation

If we assume that the flow in the boundary layer is inviscid,

the relation between the velocity and pressure near the surface is

described by the Bernoulli equation, and the kinetic energy of the

particles is sufficient to ensure their movement to the trailing edge

against the increasing pressure. However, in reality the presence of

frictiorn in the boundary layer leads to more rapid reduction of the

kinetic energy, so that at some point, termed the boundary layer

separation point (n), not only the velocity at the wall but also its

first derivative along the normal to the solid surface and therefore

the friction stress become equal to zero

WXN =o0; To to

Under the influence of the increasing pressure downstream of the

separation point, reverse flow develops in the boundary layer and

leads to separation of the boundary layer from the body surface.

Outside the viscous zone bInd the separation point, the pres-

sure gradient decreases nearly t zero because of the reduction of

the main flow cross section, so that the pressure on the aft part

of the body decreases in comparison with the pressure obtained in

the case of inviscid fluid flow past the body.
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The reverse flow velocities are -:ot large downstream of thL

separation point, but the tangential stress v0 changes markedly and

may even change its sign. We might get the impression that the

overall drag of the body decreases when boundary layer separation

occurs. However, this is not really so.

The drag force is made up from the resistance associated with

friction in the boundary layer and pressure drag owing to the dif-

ference of the pressures on the forward and aft parts of the sub-

merged bodies. If the fluid is inviscid, the frictional drag is zero.

But in this case the pressure drag, as was shown for the example of

transverse flow past a cylinder (see Chapter VI), may also be zero

(this is possible in the case of unseparated flow, when the pressure

on the aft region will be the same as at the forward stagnation

point).

In a viscid medium both frictional drag and pressure drag are

always present. The relationship between these components depends

on the shape of the body. If the body has large transverse dimen-

sions in comparison with the longitudinal dimensions, boundary

layer separation is always observed at the body surface and this

leads to incomplete pressure recovery on the aft part of the body.

The pressure on the aft part of the body is lower than on the

forward part. The resultant pressure force ref;brds body motion

in the flow.

If the body has an elongated streamwise form with smooth con-

tours, even if flow separation is observed it will be only on a

small portion of the body surface and the frictional resistance

makes up the major portion of the drag. Such bodies are termed

streamlined, in contrast with those described above, for which pres-

sure drag is dominant and which are termed bluff bodies. For the

same cross sectional areas, the total drag of streamlined bodies may

be many time less than that of bluff bodies. Therefore bodies

(wing, fuselage, and so on) which are located in a streiun are always
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given a streamlined form, so that boundary layer separation is un-

likely or the separated flow region is minimized.

The danger of ooundary layer separation can be reduced by re-

ducing the magnitude of the positive pressure gradient (this can be

achieved by giving the body an elcngated drop-like shape) or by

influencing the nature of the flow in the boundary layer. Usually

boundary layer separation takes place far from the nose portion of

the body, in the zone of positive pressilre gradients, where the

boundary layer is turbulent. The greater the degree of turbulence

of the boundary layer flow, the more intense is the momentum exchange

between the outer and wall layers, and the larger the velocity near

the surface and therefore the less the danger of separation.

The degree of turbulence in the boundary layer increases with

increase of Re. This means that increase of Re reduces the danger

of boundary layer separation. The degree of turbulence in the bound-

ary layer increases with increase of the degree of turbulence of the

outer flow. Unfortunately, we have no control over the degree of

turbulence of the atmosphere. However, in internal problems (flow

in a diffuser) we can increase the degree of turbulence to avoid

the onset of boundary layer separation. Finally, we can cause

boundary layer transitioa artificially by locating special protuber-

ances - turbulence generators - on the surface of the body. In

this case the friutional drag increase is compensated by the reduc-

tion of the pressure drag.

The influence of the degree of outer flow turbulence and tuebu-

lence generators on the drag of bodies is so large that the degree

of wind tunnel turbulence is often determined on the basis of the

magnitude of the drag coefficient of a sphere located in the tunnel

working section. The higher the degree of turbulence, the smaller

is the separation zone on the aft part of the bluff body, and this

means that its drag coefficient is smaller. Figure 11.10 shows the

influence of the degree of flow turbulence on the sphere drag co-

efficient. We see from the curves in Figure 11.11

FTD-HC-23-720-71 23



""""___ I

4--I

[,I n I I Is

Figure 11.11. Sphere drag coeffi-

Figure 11.10. Effect of cient versus Re:

flow turbulence on sphere 1 - subcritical zone; 2 - -- riti-
drag coefficient cal zone; 3 - supercritical zone( C 1 >  C 2 >  C 3 >  E4 )

that with increase of Re, when the boundary layer becomes turbulent

ahead of the separation point, there is a marked drag reduction,

which can be explained by the reduction of the separation zone

dimensions as a result of boundary layer turbulization, and this

means more complete pressure recovery on the aft part of the

body.

Techniques involving energetic influence on the stream,

termed boundary layer control, are used to prevent boundary layer

separation.

§11.7. Boundary Layer Control

As was shown above, boundary layer separation arises because

of excessive retardation of the flow near the surface by the friction

forces. Therefore, if we artificially increase the velocity near

the surface we can avoid the onset of separation. Increase of the

velocity can be achieved in two ways - either by sucki.ng the
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retarded flow layer into the submerged body, or by blowing off the

retarded layer with the aid of a Jet blown with high velocity along

the surface in the direction of the stream. The first method is

called boundary layer suction; the second is termed boundary layer

blowing.

Boundary layer suction. Let us examine a cylinder in a fluid

stream. Direct observations show that vortices separate periodi-

cally from the cylinder (at points A and B) and form a vortex street

behind the cylinder (Figure 11.12). If we make slots at the separa-

tion points A and B and use a vacuum pump to suck off the boundary

layer, then we can improve the flow past the cylinder markedly

(Figure 11.13).

Figure 11.13. Separation-
Figure 11.12. Schematic of free flow past cylinder ob-
flow past circular cylinder tained by sucking boundary
and formation of vortex layer through slots A and B

street

The aerodynamics of an airplane wing can be improved .5imilarl,-

In fact, boundary layer suction through a slot located on the upper

surface of the wing near the trailing edge (Figure 11.14) makes it

possible to maintain separation-free flow over the wing clear up

to the slot itself, even at high angles of attack.

Boundary layer suction has recently been used to reduce fric-

tional drag, since the point 4f transition from the laminar to turbulent
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boundary layer is shifted

downstream. As a result, the

flow is laminarized and there- -_

by the friction is reduced,

since the friction is less Jr4

the laminar boundary, layer
than In the turbulent.

Figure 11.14. Separation-free
flow past wing profile obtained

able influence of suctlon by sucking boundary layer through

amounts to the fol1owing. a slot

First, the fluid particles

which are slowed down in the rising pressure region are removed from

thle boundary layer before they can separate from the wall. As a

result, a new boundary layer which is capable of overcoming back

pressure is created downstream of the slot. Second, laminar boundary

layer suctqn creates velocity profiles in the layer which have a

higher stability limit, i.e., higher critical Re, in comparison with the

velocity profile in the bcundary layer without suction.

Theoretical and experimental studies of this boundary layer

control technique are being made at the present time. Of consider-

able interest is the attempt to use continuous suction along the

entire wall through discrete holes or creation of a porous wall,

through which suction can be performed more effectively.

Boundary layer blowing. The blowing method can also be used to

achieve separation-free flow by iupplying additional energy to the
retarded fluid particles in the boundary layer (Figure 11.15). The

additional energy is introduced by blowing an al.r jet into the

boundary layer from inside the submerged body. In this case the

velocity of the air particles in the layer adjacent to the wa'! is

increased, eliminating the danger of separation.

FTD-HC-23-720-71 26



We note that boundary

layer control with the aid

of blowing and suction can

have a large effect in the __

sense of lift coefficient

increase. However, construc- Figure 11.15. Separation-free

t:Lonal difficulties, and also flow past wing profile in pre-

the large energy expenditures sence of blowing

required, prevent the use of

blowing and suction in civil

aviation practice at the present time.

Other boundary layer control techniques also exist, for example,

driving the wetted wall in the direction of motion; however, this

technique involves still greater constructional difficulties. Ex-

perimental studies are being made of boundary layer control using

vortex and electrodynamic techniques(l). However, these techniques

are at the moment only of scientific and theoretical interest.

REVIEW QUESTIONS

1. What leads to the formation of a boundary layer on solid

bodie submerged in a stream?

2. What factors influence the location of transition from

laminar to turbulent boundary layers?

3. Describe the boundary layer control techniques.

Footnote (1) appears on page 29.
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PROBLEMS

1. Find the friction drag coefficient and force of a smooth

plate with dimensions Z = 0.5 m, b = 3 m at a = 0. The flow velo-

city V = 12 m/sec. Assume the flow is a) laminar; b) turbulent.

The air parameters corres-n d to the altitude H = 10'O0 m. Find the

boundary layer thickness at the end of the plate.

Answer: a) 2cf = 0.00417, X a 0.51 N, 6 = 4.65 mm;

b) 2 cf = 0.01135, X = 1.36 N, 6 = 14.1 mm.

2. Find the profile drag coefficient of a wing with relative

thickness T = 14% and chord b = 3 m in flight at an altitude H =

600 m at a speed V = 600 km/hr. The boundary layer transition

point is 20% of the chord from the profile nose.

Answer: cf = 0.0058.

3. An airstream with velocity V = 30 m/sec flows past a thin

flat plate aligned with the stream under standard atmospheric con-

ditions. The plate length Z = 200 mm. Taking an average value

5 - 105 of the critical Re based on boundary layer length, show

that the boundary layer which forms on the plate will be laminar.

Find the friction coefficient cx fr* The kinematic viscosity of air

at standard conditions is v = 0.145 x 10- 4 m 2/sec

Answer: c x fr = 0.002.
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Footnotes

Footnote (1) on page 27: See, for example, Collection of Scientific
Papers "Some Problems of Aerodynamics and
Electrohydrodynamics," Vol. 1, KIIGA,
1964; Vol. 2, KIIGA, 1966; Vol. 3, KIIGA,
1968).
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CHAPTER XII

WING PROFILES AND THEIR AERODYNAMIC

CHARACTERISTICS

§12.1. Wing Profile Geometric Parameters

A body which creates in a fluid stream a lift force which exceeds

considerably the drag fgr!e is called a wing. As a rqle a wing has a

from which is symmetric about a plane called the plane of symmetry.

Any section of a wing by a plane parallel to the wing plane of

symmetry is termed the wing profile. The wing profile may be dif-

ferent in shape, size, and orientation at different sections.

One possible wing profile

is shown in Figure 12.1.

Point A is the profile leading A --

edge. The line AB connecting

the two most distant points of "

the profile, i.e., the leading

and trailing edges of the pro-

file, is termed the profile Figure 12.1. Profile geometric
parameters
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I.

chord b. The chord divides the profile into two parts -upper and

lower. The angle between the profile chord and the freestream flow

direction is termed tie angle of attack a if the freestream velocity

vector is parallel to the profile plane. In the more general case,

the angle of attack is measured by the angle between the profile

chord and the projection of the freestream velocity on the profile

plane.

In studying profile geometric characteristics,we use a rectan-

gular coordinate system in which the origin coincides with the pro-

file leading edge, the x axis is directed along the chord toward the

trailing edge, and the y axis is directed upward.

l In this coordinate axis system, the equarions of the upper and
~~~lower profile contours have the form Yu = fl(x ) and y, 2()

respectively.

The profile thickness at any point of the chord is expressed

as the difference of the ordinates of the points yu and yl. The

maximal length of the segment perpendicular to the chord between the

upper and lower profile contours, i.e., yu - y,, is called the p:o-

file maximal thickness or simply thickness and is denoted by c

(see Figure 12.1).

The ratio of the profile maximal thickness c to the chord b is

called the profile relative thickness

or, in percent,

The line connecting the midpoints of the segments yu -YZ

constructed at different points of the 3hord is called the profile
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mean camber line. In the particular case in which the profile is

symmetric, the mean camber line coincides with the chord. The

maximal ordinate of the mean camber line is called the profile

camber f and its ratio to the chord is called the relative camber.

or, in percent,

f I00=f%.

The abscissas of the profile maximal thickness and maximal

camber are denoted by xc and xfrespectively (see Figure 12.1).

The rat .os of these quantities to the chord are termed respectively

the relative thickness and camber abscissas

5F Xe

The values of xc for subsonic profiles lie in the 25 - 30% range,

while the values for supersonic profiles lie in the 40 - 50% range.

The radii of curvature at the "head" and "tail" of the profile

(fhead' rtail) are also referred to the chord and are often expressed

in percent of the chord length. For example, the relative radius

= rb.

A series of profiles can be obtained by deforming some initial

profile while holding one or more of the dimensionless parameters

listed above constant. The quantities b, C, X x) f are the

basic profile geometric parameters, and they determine its aerodynamic

ctharacteristics. The relative thicknesses of ine aerodynamic pro-

files of wings and propeller blades usually lie in the range from

3 - 45 up to 20 .- 25,%. The thin profiles are used at the tips of

propeller blades and for wings of supersonic airplanes.
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The relative camber of modern

wing and propeller blade profiles.

usually does not exceed 2%. The

camber of the airplane profiles

of the 1920's and 1930's was

considerably greater and reached

6 -8%.

Modifications of wing profile

shape associated with flight

vehicle improvement and flight

speed increase are shown in

Figure 12.2.

§12.2. Aerodynamic Forces

and Moments
Figure 12.2. Aircraft
profile forms three

The action of the air on the lower profiles are

wing leads to the appearance of supersonic)

forces distributed continuously

over the entire wing surface, which

can be characterized by the magnitudes of the normal p and tangential

T stresses at every point on the wing surface.

We term the force R, the principal vector of the system of ele-

mentary aerodynamic forces distributed over the wing surface, the

total aerodynamic force. However, frequently the total aerodynamic

force R is taken to mean only the resultant of the normal forces,

neglecting the friction forces.

The moment Mz of the tota2 aerodynamic force about the wing

leading edge is termed the longitudinal or pitching moment. The

moment M is considered positive if it tends to rotate the wing in

FTD-HUC-23-720-71 33



the direction of increasing angles of attack, and negative if it is

directed oppositely. A positive moment is called a climbing moment;

a negative moment is called a diving moment.

In theoretical and experimental studies of the force interaction

between a moving body and a medium, we usually use the components of

the vector R in some coordinate system, rather than the vector R it-

self. Two coordinate systems are often used in aerodynamics: wing

and body coordinates.

In the wing coordinate system, the Ox axis coincides with the

Jvelocity direction; the Oy axis is perpendicular to the Ox axis and
lies in the plane Df symmetry of the flight vehicle. The Oz axis

Iforms a right-hand system with the Ox and Oy axes (directed along

the right wing). The coordinate origin can be chosen arbitrarily.

Most cften the origin is located at the wing leading edge.

In the body coordinate system, the Ox1 axis is directed along

the wing chord or airplane longitudinal axis. The 0yI axis is per-

pendicular to the Ox1 axis and lies in the plane of symmetry of the

flight vehicle. The 0zI axis forms a right hand system with the

Ox1 and Oy1 axes.

We shall denote the pro-

Jections of the force R in the

wing coordinate system by X,

Y, Z and in the body coordi-

nate system by Xl, YI, A1

(Figure 12.3). In the solu-

tion of plane problems the

aerodynamic force R is re-

solved into two components

X, Y (Xl, YI) .  Figure 12.3. Components of total
aerodynamic force in wing and

body coordinate systems
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In the body coordinate system the force components Y1 and X1

are called respectively the normal and tangential components.

In the wing coordinate system the projection of the force R

on the direction perpendicular to the freestream velocity is called

the lift force Y, and the projection of the force R on the direction

of the wing (airplane) velocity is called the drag force X.

We have the following relations between the forces in th, wing

and body coordinate systems (see Figure 12.3)

Y1=Ycosa+Xslnu,

X 1=Xcosu-Ysing (12.1)

or, conversely,

Y=Ycosa-X 1 sin, } (12.2)
X=Xcosa+Ysna.

Let us examine a cylindrical wing of infinite span in a fluid

stream and identify as the characteristic length a segment of

length I and as the characteristic area the area S = 1b (b is the

chord length).

We assume that the Ox axis is directed along the profile chord,

and the Oy axis coincides with the line of measurement of the maxi-

mal profile thic),ness (Figure 12.4). The elementary pressure force

acting on the wing surface element dsZ is pdst. The projections of

the elementary force on the Ox and Oy axes are

dY1 = dslp cos p = -lpdx;

dX, =dslp sin P=lpdy.

The "plus" sign applies to the lower surface; the "minus" sign to

the upper surface.

To find the forces X and Y it is necessary to sum the ele-

mentary components over the entire profile contour.
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Figure 12.4. Illustration
for calculating lift and

drag , "

• iP,

We make the summation along the x axis separately for the upper

and lower profile surfaces. Then we obtain for the normal force

Y, = I p.-p.)dx. (12.3)

(A.8 )

We make the summation along the y axis separately for the for-

ward and aft parts of the profile. Denoting respectively the pres-

sure on the forward part of the profile by P_ and on the aft part
byp a we obtain

X3= (p,-p,)dy. (12.4)
'U

In reality the force X is greater than that defined by (12.4) by

the magnitude of the resultant of the friction forces on the profile

surface.

Knowing the forces Y1 and X for every angle of attack, we can

use (12.2) to find the corresponding lift force Y and drag force X.

The total aerodynamic force is

Experiment ,buws that the tangential force X and the profile

height are small ., comparison with the normal force Y and the

FTD-HC--23-720-71 36



profile chord; therefore, the moment from the tangential force is

usually neglected in view of its smallness.

The elementary moment from the normal force dY1 is

dMl= -drx= -(p- plxdx.

Then the total moment is

(12.6)
4, -1l) (p,-pjxdx.

§12.3. Profile Aerodynamic Coefficients and L/D

Formulas were presented in Chapter VII for finding the aero-

dynamic forces. We have the following formulas for the lift and drag

Y= eiqS, X=c.qS, (12.7)

V2

where q = p 2- is the velocity head or dynamic pressure;

c -is the lift coefficient;
y

c - is the drag coefficient;
S - is the wing lifting area;

V - is the freestream velocity or the wing (airplane)

velocity.

The formulas for the normal and tangential forces have the form

Y=c,qS, Xl=c ,qS, (12.8)

where cyl, cxl - are the normal and tangential force coefficients.

If we denote the total aerodynamic force coefficient by c R and

the total moment coefficient by cm, we can write
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Rt-c$qS, M=cASb. (12.9)

With account for (12.5) we obtain

_______ (12.10)

If we express the forces in (12.1) and (12.2) in terms of their

coefficients, we obtain

cj'=c,COSa+'CSna" (12.11)
ca,=c5COSQ-c, sina

or, conversely,

c'--C COS a-elslna,
C-=C Cosa +CM sina. (12.12)

The angles of attack realized in flight are usually small;

therefore we can set cos a = 1, sin a * a. Considering that in

practice the drag coefficient ex is usually an order of magnitude

smaller than the lift coefficient cy, we can reduce (12.11) and

(12.12) to the simpler and more frequently used form

C#I=Cv (12-13)
c, =cs- Cue

and

I,=C, (12.14)

Using (12.3), we can write the formula for finding the normal

force coefficient in the form

I
I I ('P"wu P.-o dX= ()f

V2 J b
(A.EJ) 2 /

where

- dx -r P.-Po

Q7-3
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We obtain similarly the formula for cm

.. I .

For small angles of attack, this expression can also be used

to find the lift coefficient

c.=5 ((12.15)

Thus, knowing the pressure distribution on the upper and lower
surfaces of tht profile, we can obtain the value of the lift coeffi-

cient. To realize this method we must c:irry out an experiment with

a pressure tapped profile model, providing flow conditions corre-

sponding to infinite wing span (plane flow).

The aerodynamic coefficients are usually obtained by the force

balance method. Special balances are used to measure directly the

forces and moment acting on a wing model in a wind tunnel, and

then the coefficients are found by calculation.

The profile efficiency K is used to evaluate the aerodynamic

properties of the profile. The profile aerodynamic efficiency is

the ratio of the lift to the drag

YK_-

We see from Figure 12.3 that this quantity is the slope of the total

aerodynamic force R to the freestream direction, i.e.,

K=tg?.

Th, lcw~r the drag for the same lift, the higher is the effi-

ciency. Tie dimensionless quantities c., cy, Cm, cR and K are the

basic aercdynamic coefficients of the wing profile.
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§12.4. Dependence of Aerodynamic Coefficients

on Profile Angle of Attack. Profile Polar

The aerodynamic coefficients cx, cy, cm are independent of one

another, and the coefficients c. and K are found from the correspond-

ing formulas.

The total aerodynamic force coefficient CR, and also its com-

*ponents a and c , the moment coefficient cm, and the aerodynamic

efficiency K depend on the profile form, angle of attack, similarity

criteria Re and M, degree of turbulence, and so on. These coeffl-

cients are the same for dynamically similar flows and are therefore

convenient to use. For this reason the results of experimental

studies are presented in the form of relations for the aerodynamic

coefficients. For a given profile and given Re and M, change of

the angle of attack a leads to marked change of the profile aerody-

namic coefficients.

The curve of aerodynamic lift coefficient cy versus angle of

attack a for low flow speeds, when gas compressibility can be

neglected, is shown in Figure 12.5. The maximal value of c y for

= c is denoted by cymax" For the usual profiles cy max varies

In the range 0.9 - 1.4. At the angle of attack a = 00 the modern

profiles, having some camber, already have some lift force. The
greater the profile camber f, the further to the left the curve cy -

f(a) lies (see Figures 12.5). The angle of attack at which cy = 0

is called the zero lift angle of attack and is denoted by a0. It

is usually negative and small (a0 = -0.02 - -0.05 rad). For Fym-

metric profiles 0 
= 0.
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Experiment and theory show that for separation-free flow past

a profile the coefficients c and c depend linearly on the value of

a over a wide range of angle-of-attack values

I
Foranle o atac+aprac ,n %rdpn (12.16)
where two - is the moment coefficient at zero lift;

eva A =-- are constants for a given profile.

For angles of attack approaching a the positive pressure gradient

of the aft part of the profile increases so much that it leads to

boundary layer separation -the flow around the wing is no longer

smooth. As shown above in Chapter XI, separation of the laminar

boundary layer occurs earlier than for the turbulent boundary layer
for the same pressure gradient.

In level flight the airplane weight G is balanced by wing
lift, i.e.,

2 - - - --n

or o
=$y - 41

We see from this formula -

that the larger cy, the lower I4I
is the airplane speed. The (41
minimal value of the speed is

obtained for a. = ax _

The normal force coeffi-
Figure 12.5. Aerodynamic co-

cient cyI changes with change efficient Cy versus angle ot'

of the angle of ittack similarly attack a

to the coefficient
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With increase of angle of attack a, the prenrlie drag oefficlen.L

C first changes slowly (FigLue 12.6) and then, beginning at angles

of attack somewhat less than' rc, increases rapidly as a result of

intensification of boundary layer separation. At an angle of attack

close to the zero lift angle ax a Cx min*

The nature of the variation of the cQefficient c., differs

markedly from the variation of cx . The drag coefficient cx is
xx

always positive, while the tangential force coefficient, Cxl may be-

come negative at large angles of attack, which Is seen from (12.11).

The nature of the wing profile aerodynamic efficiency variation

as a function of angle of attack is shown in Figure 12.7. The maxi-

mal value of the efficiency is max - 25 for wing profiles.

-V9V 4. 41a of4 a a
V0 0 41 0 acrad -le tO a

Figure 12.6. Aerodynamic co- Figure 12.7. Wing profile
efficient c xversus angle of efficiency versus angle of

attack a attack

The relations cy a f (cx); Cyl f (C x) are important in

practice. The curve cy a f (c ) is called type I polar (Figure 12.8);

the curve cyI I' (cxl) is ter-ad the type II polar (Figure 12.9).
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CCy

405

124

44 1 4
4X2 412

r . ... ..

Cxi 4f 41V Ck

Figure 12.8. Type I polar Figure 12.9. Type II polar

If in plotting the polar, the scales are taken to be the same

along the cx and cy axes, then the vector connecting the coordinate

origin with any point of the type I polar represents in magnitude

and direction the resultant aerodynamic force coefficient corre-

sponding to the given angle a We obtain the angle of attack corre-

sponding to the maximal efficiency K max at the point of contact of

the tangent drawn from the coordinate origin to the type I polar.

We note that the scale along the cx axis is usually 5 - 10 times

larger than that along the c y axis.

§12.5. Dependence of Aerodynamic Coefficients on

Re, e, and Profile Shape

For a given profile and constant M, c (degree of turbulence),

and angle of attack a the maximal lift coefficient and minimal drag

coefficient depend to a considerable degree on Re. For profiles of
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moderate relative thicknesses ( = 10 - 15%), cy max increases with

increase of Re. For small values of Re, the coefficient c max is

determined by separation of the laminar boundary layer. With in-

crease of Re the point of transition from laminar to turbulent

boundary layer usually shifts upstream, and therefore separation of

the turbulent boundary layer will take place. There is a reduction

of the separation zone size and increase of the coefficient cy max-

For thin profiles (F = 5 - 6%) and profiles with sharp leading

edge the coefficient cy max remains nearly constant with change of

Re, since flow separation for the thin profiles takes place near

the profile leading edge and at low angles of attack. For thick

profiles (F = 15 - 20%), the coefficient cy max decteas@s with in-

crease of Re, since large pressure gradients develop on the aft por-

tioa of such profiles even at low angles of attack, leading to
earlier separation of the boundary layer.

The minimal drag coefficient cx min is determined by the flat-

plate friction coefficient cx, which in turn depends on Re

where n = 0.5 for the laminar boundary layer and n = 0.2 for the

turbulent.

Hence we see that-there is a reduction of the minimal drag

coefficient cx min with increase of Re.

With increase of the initial degree of stream turbulence e,

the coefficient cx min increases, while the coefficient cy may of

thin and thick profiles changes only slightly; the coefficient

cy max for profilec of moderate thickness increases. This influence

of initial stream turbulence on the profile aerodynamic character-

istics is explained by the change of the location of the point of
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transition from laminar layer to turbulent boundary layer with in-

crease of the initial degree of turbulence e.

The profile geometric parameters have considerable effect cn
the profile aerodynamic coefficients. Increase of the profile rela-
tive thickness F causes increase of the minimal drag coefficient

cx min* With increase of F in the range 5 - 12%, the maximal lift

coefficient Cy max increases, while in the range 12 - 20% it

decreases.

With increase of the profile relative camber Y the coefficients

cx mir (for profiles of moderate thickness) and cm and the zero lift

angle (in absolute magnitude" increase. Figure 12.10 shows the

effect of camber f and of the abscissa Yf on the maximal lift co-

efficient cy max for a subsonic profile of large relative thickness.

6 --- -4Figure 1.2.10. Cya as aI ~ function of f and the ab-

,/ 2 scissa Yf

- Fiur 1210 CyVa as5 arV

§ 12.6. Center of Pressure. Profile Focus
Il

The point 0 of intersection of the line of action of the aero-

dynamic force R with the wing chord is called the center of pressure

(Figure 12.11). The ratio of its abscissa to the profile chord is

denoted by 7D = xD/b. To find the abscissa of the aerodynamic force

point of application,we must know the moment of the aerodynamic

force about some point on the profile.
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XF [ 01Figure 12.11. Definition
V of profile center-o.f-XA pressure and focus

The moment about the profile leading edge is

M.= -Y~x=-(Ycosa+X sIna~x,. (12.17)

From (12.17) we find the al-scissa of the center of pressure

M, (12.18)

On the basis of (12.8), (12.9), (12.11) we ha-,e

en IC- (12.19)

Now let us fin~d the moment of force Y 1 about the point F on

the profile (see Figure 12.11)

MF - Y', (x. -- Xp) =.44 + Ylxp.

Converting to coefficients and using (12.16), we find

C.; , 4.cm-1mxp cn .4-Mic51 + cm>x,=

~CM0+ (M + ;.) c,' (1'.20)

Hence w" see that f£Gr x F = -in, c mF 'Zc= and is independent of the

angle of attack. The point having this property is called the pro-

file focus.
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The dimensionless coordinate of the profile focus determines

the rate of change in moment coefficient about the profile

leading edge. In fact, it follows from (12.16) and (12.20) that

S_"(12.21)

The moment coefficient relative to any other point B on the

chord with the abscissa R can be found from the formula

$,,=c,+(:-- (12.22)

For most profiles at low Mach numbers (i.e., without account

for compressibility) the coefficient m = -0.22 - -0.25; this means
that xF = -m = 0.22 - 0.25 or xF = 0.22 - 0.25 b, i.e. the focus

is located about one quarter chord from the leading edge. We note

that a fixed position of the focus on the chord is possible only

with a linear relation cm = f (c y). For a symmetric wing profile

the curves cm = f (a) and cy = f (a) pass through the coordinate

origin (Figure 12.12).

Within the limits of the linear dependence, we can obtain

from two triangles (see Figure 12.12)

-c=a tgp2 ; c,,=ajtg2 .

Then the relative coordinate of the center of pressure

-- -- =const. (12.23)

Consequently, the position of the center of pressure remains con-

stant for a symmetric wing profile.

For an asymmetric profile the center of pressure shifts along

the chord or its extension from minus infinity to plus infinity with

variation of the angle of attack. Substituting the value of cm
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from (12.16) into (12.19), we obtain

XA=- em =_ MCr+Ce C--O- €.(12.24)
Co Cy

For thin and slightly cam-

bered profiles the quantities

Ca are nearly independent of the 
Cf- .C

y
profile shape, while Cmo., con- I t

versely, depends markedly on the I i

profile shape. We see from '

(12.24) that for the symmetric

profiles, for which Cm0 = 0, the

profile center of pressure and

focus coincide, i.e., they are Figure 12.12. Aerodynamic

at the same point. For asym- coefficients cy and cm ver-

metric profiles at large posi- sus angle of attack a for
symmetric profile

tive and negative angles of

attack a,7D + XF' while for

= a0 (which corresponds to cy =0) xD = + , since in the absence

of a lift force the aerodynamic effect on such a profile reduces

<3 to a couple.

§12.7. Pressure Distribution Along the Profile

In strength analysts of the wing, in addition to the magnitudes

of the coefficients cx , cy, cm , we must know the pressure distribu-

tion along the profile. Pressure distribution diagrams for an

asymmetric profile at different anglus of attack a (a = -0.05 rad,

0.20 rad, 0.25 rad) are shown in Figure 12.13. These diagra'' were

obtained for low M, i.e., without account for compressibility of

the fluid stream. '"he abscissa is the relative distance x = x/b,
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and the ordinate is the pressure coefficient p = Ap/q 0 , where

Ap =Ploc - p,. and q. = p 2.
2

If ploe > p, then F > 0 and the pressure is called positive.

If p < 0 the pressure is termed regative or suction.

At angles of attack approaching cr, la2ge pressure gradients

develop on the wing surface and cause separation of the boundary

layer.

A schematic of flow past a profile at the critical angle of

attack and separation of the boundary layer from the upper profile

surface, and also pressure diagrams for flow with and without

s-paration of an incompressible fluid, are shown in Figure 12.14.
Figure 12.15 shows the vector diagrams of the pressure distribution

for different angles of attack. The relative pressure difference

is shown in the form of arrows - vectors plotted along the normal

to the profile surface. For clarity the suction region is indicated

by a "minus" sign and the positive pressure region by a "plus" sign,

with suction shown by arrows directed along the outward normal and

positive pressure by arrows directed along the inward normal. We

see from the figure that at the angle a t a0 there is on the upper

surface of the profile near the leading edge a positive pressure,

which then transitions into a suction. The reverse phenomenon oc-

curs on the lower surface: near the leading edge there is suction,

which transitions into a weak positive pressure.

At the point where the stream splits at the leading edge, where

Vloc = 0, Y - 1 (for a compressible fluid the pressure difference is

V2

somewhat larger than p 2 and p > 1). At negative angles of attack

this point lies on the upper surface of the profile, while for a > 0
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-2.0 "c0,25rad
P

'
A
-2.0

*t c=0 .2 radi  ,

I Figure 12.14. Flow over profile atI stalling angle of attack:

1 - flow without separation; 2
1.0 flow with separation (point m is

V- rad point of boundary layer separation)

, o C-0, rraa

123 I

0

-0,20 rad
Figure 12.13. Pressure
distribution diagrams for
asymmetric profile aL dif-
ferent angles of attack:

I lower surface; 2
upper surface

• 0,25 tad k+

Figure 12.15. Vector diagrams of
differential pressure distribution
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it shifts to the lower side. At angles of attack greater than

0 0.5 rad, negative pressure extends over nearly the entire upper

surface, and positive pressure over the entire lower surface.

At angles of attack near the stall, the suction on the upper

surface reaches very large values (I = -2 to -3 or less), while the

positive pressure on the lower surface is characterized as before by

a value p~.

This implies that the wing lift force is created primarily by

suction on the upper surface and to a lesser degree by positive

pressure on the lower surface.

The minimal pressure point on the subsonic profiles which have

been used in the past was located on the upper surface near the

leading edge. This favors early transition of the lamina- boundary

layer into a turbulent layer, and at large pre-stall angles of

attack a for profiles with a thin "nose" leads to flow separation.

The pressure diagrams make it possible to plot the distribution

along the profile chord of the loading resulting from the pressure
forces. In this case the vectors p are projected on the perpendi-

cular to the chord, and these projections are laid off upward or

downward relative to the chord depending on the direction of the

vector p. For example, the projections of the suction vectors on

the upper surface and the positive pressure vectors on the lower

surface are plotted above and below the chord, respectively.

Summation of the loads distributea along the chord yields the

magnitudes of the aerodynamic force components X and Y and their

coefficients cx and cy.
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REVIEW QUESTIONS

1. Define wing profile. Write down the wing profile aero-

dynamic coefficients.

2. DefI'n profile center-of-pressure and focus.

3. How is the optimal angle of attack found from the profile
p~olar?

4. How does the lift coefficient cy depend on the angle of

attack for symmetric and asymmetric profiles?

5. Analyze the diagrams of the pressure distribution over

the profile for different angles of attack.

PROBLEMS

1. Find the magnitude of the average circulation around the

wing profile of an airplane with takeoff weight G = 588,000 N,
flying at H = 8500 m and V = 828 km/hr. The wingspan I = 32 m.

Answer: Fav = 161 m2/sec.

2. The drag coefficient cx of a new airplane was 0.019.

During operation and after repairs to the skin the drag coefficient

increased to 0.021. Find how much the drag force increased in

flight at H = 6000 m and V = 648 km/hr. The airplane wing area

S = 140 m2.

Answer: LX = 3020 N.
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3. During flight of an airplane with wing angle of attack

a = 0.07 rad the lift coefficient was 0.4. What is the zero lift

angle if c y/3a = 5.3.

Solution. According to (12.16)

e,= e, (a - a),

hence

q_-- €-j- - ± .. 0,07 -0,0054 rad.
F - -,-5.3
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V

CHAPTER XIII

AERODYNAMIC COEFFICIENTS OF PROFILE IN SUBSONIC FLOW

§13.1. Basic Equation of Gas Motion and Its Linearization

by the Small Perturbation Method

To obtain the equation of motion of a barotropic gas and ana-

lyze the aerodynamic properties of wings at subsonic speeds with

account for compressibility in steady plane-parallel flow, we write

the two Euler Equations (5.3) and the continuity Equation (2.6')

in the form

7o_ a x ORl
OP__ =Q(. +V m) (13.1)

a(evx) ,, a(QV'v) =0. (13.2)
ax IIb

Equation (13.2) after differentiation takes the form

___( + v -- (13.3)

FTOx '- .-7---o.
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In this case in which p = p (p) and, conversely, p = p (p), the

partial derivatives -R and in (13.3) with account for the formula

de for the speed of sound will have the form

a@ 8 8  I OP O~89P1 8

5x Wp OP ay 8* 8 2 4

Substituting these expressions into (13.3), we obtain

Q( a, + air*_ l. ai ,ap =0.

or, with account for (13.1),
8* .. ov /r v wFv, v2 av .j

After transformation we have

a- a2  4 -0 .4

If we examine irrotational motion, the velocity components are

expressed in terms of the velocity potential
V - -----; V

-V8, 1, =0

With account for these expressions, (13.4) takes the form

a_ 2  +(va,).+2vv a2 =o. (13.5)

This eualit is called the b uation of motion of a comn -

pressible flui in plane-parallel flow. It can be used for various

theoretical studies of subsonic and supersonic gas flow past wings.
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Equation (13.5) is a nonlinear partial differential equation, since

the speed of sound, expressed in terms of the velocity components,

depends on 1i and - . It is difficult to find the general solution
Dx 9y

for such equations; therefore we resort to their linearization,

i.e., we reduce the equations to a linear form by one method or

another.

Exact solutions have been obtained only for a few simple flows.

The most successful solution is that of Chaplygin, who converted in

(13.5) to new variables (velocity hodograph variables) and after the

relevant transformations obtained a line&-- equation. Several exact

solutions for jet flow problems are obtaia.td with the aid of the

Chaplygin transformation. S. A. Khristianovich applied the Chaplygin

method with success to wing profiles and solved the problem with

account for the influence of air compressibility on the pressure

distribution over the profile. We shall not discuss these methods

further.

Let us turn to the approximate linearization of (13.5). In

the case of flow about a thin profile at small angle of attack, the

changes or perturbations of the gas parameters (velocity, density,
pressure) will be small in comparison with the freestream parameters.

Therefore in the equation of motion we can neglect terms containing
products of the perturbations.

If we direct the flow along the Ox axis, for our case the

velocity components, velocity, pressure, and density are expressed

by the formulas

vx=v..+v>

V - V-+V V. +V (13.6)

p= p. + 5p';
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where p', p - are small perturbations at an arbitrary

point caused by the flow past the profile.

Neglecting terms containing products of the perturbations,

we find
eV-== (0..+e')(V. +V,)= e.V. +Q- V;+OV.;

Qv,=(Q.+Q')v;=P-v;*.

Substituting these values into the continuity equation (13.2), we

obtain

V-K Qfr =0. (13.7)
ax ax a,

This equation is the linearized continuity equation.

For isentropic flow we have

'p. 0 '.)"

Expanding into a series and neglecting small quantities of

second order, we find p' = a 2"; hence p' ELI. Differentiating p'

with respect to x and substituting 3p'/ax into (13.7), we obtain the

continuity equation in a different form

V-,, ,0.6 -'-+ - -y=0. (13.8)

Now, linearizing the Bernoulli Equation (5.5)

dp + - 0

and substituting herein the values of p and V from (13.6), at an

arbitrarily chosen point A of the thin profile (Figure 13.1)

we obtain

dp =-(Q. +Q')d ( .

2
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Neglecting small quantities

of second order, we have ,P a

dp=-e.-.Vd . -----

Integrating, we , yx..+VW

obtain

P= -i.V-V+C.

Figure 13.1. Thin profile in gas

Considering that far flow i

from the profile Vx ' = C,

we find the value of the constant of integration

C=p.

Consequently

(13.9)

With account for (13.6) and (13.9) we have

(13.91)

Equations (13.9) and (13.9') are called the linearized

Bernoulli equations.

Substituting the value of p' into (13.8), we obtain

V aV' (V '

V.o
Considering that = we have

+.
'v an V' o

Expressing the percurbation velocity components Vx and V Y for

irrotational flow in terms of the velocity potential and substituting
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their values into the last equation, we obtain the linearized

equation or the velocity potential cf the perturbed gas motion.

(13.10)

In contrast with (13.5), Equation (13.10) is a linear differ-

ential equation and is used to determine approximately the influ-

ence of compressibility on the aerodynamics of a profile in gas

flow. This technique is called the linearization method, and the

flow described by (13.10) is called a linearized flow.

§13.2. Connection between Gas Flow and Subsonic

Incompressible Fluid Flow About a Thin Profile

Assume a thin profile (see Figure 13.1) whose form is

given by the equation y = F(x) is in a gas flow. Let us suppose

that the gas flow is irrotational and is defined by the velocity

potential

where 0" (x, y) - is the induced (perturbed) velocity potential.

Equation (13.10) holds for a thin profile.

According to (2.1) the equation of a streamline for plane flow

has the form
dxdg
F," (13-11)

Since the unseparated flow boundary condition is satisfied at the

profile surface,

The boundary condition with account for (13.6) at points of the

profile contour can be written as
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v,=v;=(v.+v')( ).

If we neglect the small quantity V' (-) contour, with the aid ofx dx

the perturbed flow velocity potential this boundary condition

takes the form

@ dx (113.12)

At an infinitely distant point

y'--o as ix 2 + S-P , 0.

Equation (13.10) together with the boundary condition (13.12) de-

fines the functi*n '' uniquely.

Equation (13.10) can be transformed into the Laplace equation

if we introduce the new variables x1 and yI, connected with x and

y by the relations

X=x; y9-=Y .

In fact

o' J2T' 2"' #2f'

ax2 TO , '

If in (13.10) we substitute in place of and their values,
ax y 2

after cancelling out (1 - M2 ) we obtain the Laplace equation in

the form

(13.13)

The potential 0' (x, y), satisfying (13.13) correspoids t,) some

incompressible fluid flow in the x1Oy1 coordinate plane. it is

obvious tiat in this; case the boundary condition (13.12) is violated
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for the function Y'(c'Y I-!-) . This means that the in-

compressible fluid flow obtained by such a change of variables

flows past a profile of different form than the specified profile.

It can be shown that this fictitious profile has a thickness which

I
is times greater than that of the original profile and

is aligned in the flow at an angle of attack which is larger by

((

a factor of y

In order to restore the boundary conditions (13.12), i.e.,

to obtaLn the flow pattern about the original profile in the

incompressible stream, we introduce the new velocity potential

Ti'' connected with *' by the relation

T! ='Y,

where y - is a constant.

The function *i' satisfies the Laplace equation, which can

be easily verified by direct substitution into (13.13).

Let us find y from the incompressible fluid flow condition

past the original profile. The boundary condition in the gas

flow at points of the profile contour has the form

"

The corresponding boundary condition in the incompressible fluid

flow at points of the profile contour will be

Footnote (1) appears on page 71.
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am, dI

if we assume the contours to be the same in both flows, then at

points of the contours dx a dyl and consequently the condition
d x d1

must be satisfied. 
Then

Jry

Hence we have

V='" I -M2.
ey

Thus, the incompressible stream flowing past the same contour

as the gas stream must have the potential

,=' V 1-M2.

This implies that the longitudinal components of the induced (per-

turbed) velocities in the incompressible fluid stream will be

greater than in the gas stream

v'. =',.l--_..

We have for the transverse components of the induced (perturbed)

velocities

_ a- @-1- = = V
v;.--y-= -g l- .VI--'. '*=

We shall express the pressure at point A in terms of M,,, for

which we use the Bernoulli equation in the form

- a2
k-| ' 2--k-
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where a - is the sound speed at the considered point;

a0 - is the sound speed in the gas at rest.

Substituting into the Bernoulli equation in place of V2 its value

from (13.6) and neglecting V, ,x2 and V' y2 as small quantities of

second order, we obtain

a2 =a, -- '. -(k-1) v-v,=e -(k -1) -v.
2

Hence

a2

1=1 I .. (13.14)

For an adiabatic process we can write

Using the connection obtained between the pressure and the sound

propagation velocity, on the basis of (13.14) we have

.. 
k tP 1vk1)M.L " (13.15)

Expanding the right side into a binomial series and neglecting small

quantities of second order, we obtain

p kM. V.

Hence

V
p =p. -p.kMt *1.,

The pressure coefficient at point A is

-P.. .M"

P= ,- =  "Q 2).. ." (13.16)
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If we use the relation expressing the connection between

V'x inco and V' corn' then on the basis of (13.16) we can obtain

the connection between the pressure coefficients at corresponding

points of the flows

This formula expresses the familia:- Prandtl-Glauert rule: the

local pressure coefficient for a thin body in subsonic compressible

flow with Mach number M is times greater than the corre-

sponding pressure coefficient for the same body in incompressible

flow. This conclusion does not extend to those flow regions near

the thin profile where the perturbation velocities cannot be con-

sidered small. Such regions include those near the stagnation

points (these regions are circled in Figure 13.1). Specifically,

for sufficiently small % the pressure coefficients at the stagna-

tion point are connected with one another by the following relation

to within small quantities of second order

+

Let us derive the relation connecting the densities at point A

and at an infinite distance from the profile. It is known that

Q.-- \ .:)=v ] " (13.18)

2
Substituting herein the value of a from (13.14), we expand Lhe

a.

right side into a binomial series. Neglecting small quantities of
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second order, we obtain

Q (13.19)

§13.3. Influence of Compressibility on Profile

Aerodynamic Characteristics

We shall use the previously obtained expressions for Cy and cm

(see Chapter XII)

We assume that these expressions for cy and cm apply to the

case of compressible fluid flow about a profile. Then, substituting

in place of pu and P their values from (13.17), we obtain

(13.20)

em -C (13.21)

If we consider that in accordance with (12.21) the profile

focus location is defined by the formula

Xp-de,

then on the basis of (13.20) and (13.21) we obtain

- c - (13.22)7rc. Xrxc.

Thus, the profile lift and aerodynamic moment coefficients increase

as a result of compressibility, while compressibility has no effect

on the location of the aerodynamic center.
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Formulas (13.20) and (13.21) make it possible to scale the

values of the coefficients cy and cm obtained (by calculation or

experiment) for flow of an incompressible medium past a thin profile

to high subsonic gas flow past the same profile. These formulas are

not suitable in the case of gas flow past a profile of considerable

thickness, nor in the case in which M. is close to one (for M = 1,

c o approaches infinity). The values of C as a function of

calculated using (13.20) and measured experimentally, are shown in

Figure 13.2.

cy a.-

The drag coefficient c for

thin profiles is determined pri- i-i

marily by the friction forces. I.
Therefore compressibility has a

considerable influence on its 2I

magnitude, since it affects the j *1

gas flow conditions in the CY I

boundary layer. I

ILet us first examine the
boundary layer on a flat plate,ousle oaFigure 1i3.2. Comparison of
restricting ourselvesactual values of cy and

purely qualitative evaluation those calculated using linear

of the effect of compressibility. theory in the subsonic region:

At the pate surface, where the 1 - experimental values; 2

velocity vanishes, the gas tem- theoretical values

perature reaches the stagnation

temperature TO . Through tiie

thickness of the boundary layer the gas temperature will vary in

accordance with the velocity variation. The approximate temperature

variation in laminar and turbulent borndary layers is shown in

Figure 13.3. We can speak of some average temperature T in the

boundary layer, w1A1:h is greater than the temperature T6 at the edge

of the layer. Fi..... 13.4 shows the relation T av  = f A),

o h. sT6
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Figure 13.3. Temperature Figure 13.4. Tempe-ature in
variation in boundary layer: turbulent boundary layer versus

1 - laminar flow; 2 - tur- M.
bulent flow

calculated for a turbulent boundary layer with variation of the

velocity across the boundary layer section following (11.16) with

n = 7.

As a result of the temperature increase, the gas density in the

boundary layer decreases, leading to increase of the boundary layer

thickness. Figure 13.5 shows the boundary layer thickness as a

function of M. On the other hand, the gas viscosity increases as

a result of the temperature increase in the boundary layer. The

boundary layer thickness increase is of greater importance than the

viscosity increase. Therefore,calculation shows that the friction

coefficient of a flat plate in gas flow is less than in incompressible

fluid flow.

The effect of M on the value of cx is shown in Figure 13.6.

The influence of compressibility on cx can be evaluated using the

G. F. Burago aprroximate formula

cx = he
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Figure 13.5. Turbulent Figure 13.6. Flat plate drag
bo-ndary layer thickness coefficient versus M :

versus1- 1;2 0<;

3- xt = 0

In subsonic flow, when heating is not significant, the variation

of c x is evaluated quite accurately by the K. K. Fedyayevskiy formula

ct, = c~

In addition to friction drag, thick profiles experience pressure

drag. Experiment shows that the pressure drag rises quite rapidly

with increase of M,. This is a result of increase of the pressure

gradient

d dp I
dx -dx vlM

in the convergent region, where the boundary layer is laminar,

increase of the negative pressure gradients leads to decrease of the

boundary layer thickness. In the divergent region, where the boundary

layer is usually turbulent, increase of the positive pressure gradi-

ents leads to thickening of the boundary layer. This implies tnat

the degree of influence of compressibility on the profile viscous

drag depenris on thc length xt of the laminar portion of the boundary

layer.
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I The profile drag coeffi-

cient depends on several basic e -"i

factors: angle of attack, z, C ,UC

Re, and relative profile thick-

ness U (Figures 13.6, 13.7). 0? M0

For small relative profile ex ex

thickness (0 < F < 0.05) the CxC

pressure drag is small in com- ' %

parison with the overall profile t

drag; therefore the drag coeffi- 0.2 " 0

cient decreases with increase Cz me

of % (see Figure 13.6). For

profiles of moderate thickness

(0.05 < T < 0.12) the drag 02 0.4 1.

first decreases and then for

0.05 - 0.5 begins to in- Figure 13.7. Effect of air
crease as a result of the compressibility on drag coeffi-

cient for several profiles of
pressure drag. Finally, the different thickness

drag coefficient of thick pro-

files increases over the entire

subsonic M. range (see Figure 13.7).

REVIEW QUESTIONS

1. How do the coefficients cx and cy change with increase of

Mo? Describe their dependence on angle of attack for different M.

2. How does compressibility affect the wing profile polar?

3. How does compressibility affect the position of the boundary

layer separation point?

4. How does the pressure distribution along the profile con-

tour change with increase of MO?
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PROBLEMS

1. The profile lift coefficient Cy incom for ., = 0 is 0.3.

Find the lift coefficient c for m = 0.8.
y com

Solution. According to (3.20)
M2 f -0.0

Answer: c ,C = 0.5,

2. By whac percent does the value of the lift coefficient cy

increase in flight at H = 500 m and V = 652 km/hr if compressibility

is considered?

Answer: by 17.8%.

3. The lift force Y of a wing segment of infinite span and

area S = 10 m2 at a = 0.0434 rad and flight speed V = 880 km/hr at

sea level is 17,760 N. For the profile 3c/ = 5.40. Find the zero

lift angle a0 and lift coefficient cy for flight speed V = 720 km/hr

and angle of attack a = 0.069 rad.

Answer: a0 = 0.0209 rad; cy = 0.228.
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FOOTNOTES

Footnote (1) on page 61: In this connection, to obtain the aero-
dynamic characteristics of the profile at
high subcritical values of MN an experi-
ment can be conducted under conditions of
incompressible fluid flow past the thick-

ened profile at the higher angle of attack.
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CHAPTER XIV

WING PROFILE IN TRANSONIC FLOW

§14.1. Critical Mach Number Concept. Shock Waves

A wing profile in a gas stream displaces by its volume part of

the gas and constricts the stream filaments flowing around it. The

gas velocity first increases along the profile, reaching the maxi-

mal value V at the most constricted stream filament section, andmax

then decreases.

In the case of adiabatic gas flow, the sound speed a in the gas

decreases with increase of the gas velocity V. At the profile point

where V = V , a = a min* Consequently, the maximal value of themax'in

local Mach number M = Mmax > M is reached at the point where the

strearn filament section is minimal (w = wmin ) (Figure 14.1). This

point also corresponds to the minimal pressure and minimal value of

the pressure coefficient ( With increase of the gas

velocity

Mm,-C V3- _,1.
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Figure 14.1. Wing profile in subsonic flow

At a definite value of V2' fcr a given profile the local gas

velocity V at the profile surface becomes equal to the local speed

of sound, in spite of the fact that the freestream velocity is still

subsonic.

The value of M for which the local flo.d velocity at the profile

surface equals the local speed of sound (the local Mach number equals

one) is termed the critical Mach number and is denoted by Mcr* This

number is always less than or equal to one, and depends on the profile

shape and its angle of attack. The Mach number % = Mcr is the upper

limit of the values of M. for which the relations obtained for com-

pletely subsonic flow are valid.I With further increase of V., when 1 > M, > Mcr, at the surface

of a profile in a subsonic gas stream there are formed regions of

supersonic velocities; in the latter the gas parameter variation no

longer obeys the subsonic flow laws.

The formulas of the preceding chapter which account for the in-

fluence of air compressibility on the aerodynamic characteristics

of thl.n profiles contain the quantity V-/TTfi, which vanishes for

M = i. These formulas are not valid forM + 1 since the aerodynamic

coefficients, which are inversely proportional to 11-M , increase

without limit in this case, while this does not occur in reality.
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The supersonic flow regions are usually closed by compression

shocks (shock waves). The appearance of compression shocks causes

additional mechanical energy losses in the flow around the body.

This phenomenon is usually termed shock stall. In many cases the

shocks also cause separation of the boundary layer.

At the instant of stall onset,M. = M and sonic flow velocity
or

apvears on the profile at that point of its surface at which the

pressure is minimal. S. A. Khristianovich (I ) showed that Mcr for any

profile is a function only of the magnitude of the minimal pressure

coefficient, defined from the pressure distribution patterns along

the contour for low incompressible fluid flow velocities past the

profile (Figure 14.2). The relationships between Ycr and P7min incom

for air, obtained using the Khristianovich and Burago methods, are

shown as curves in Figure 14.3.

Pmtn

-1.5

2 {
I-x , I

i . . .......

44 45 46 47 0.8 MKP

eFigure 14.2. Variation of Figure 14.3. Minimal pressure
pressure coefficient T along coefficient versus M cr:
prcfl l ccitour in incom-

pressible flow 1 - Khristianovich nethod: 2
Burago method

Fcotne , ) a, ,.s on page 86.
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Thus for M > M there are on the wetted surface both subsonic

and supersonic flow zones. The subsonic zones do not disappear

immediately upon reaching supersonic flight speeds. Depending on

the profile shape, this occurs at M = 1.2 - 1.4 or more. The flow

regime in which there are both subsonic and supersonic zones in the

flow around the profile is termed transonic. This regime includes

Mach numbers in the range Mcr < M < 1 and in the low supersonic

range.

§14.2. Effect of Angle of Attack and Profile Shape

on_Mcr and Flow Structure Around a Profile

Figure 14.4 shows the theoretical values of Mcr for a family

of symmetric profiles as a function of relative thickness and angle

of attack a. With increase of

the angle of attack a, the con- M

striction of the elementary -J

stream filaments by the profile

increases and consequently Mcr

decreases. For an infinitely . 4
thin flat plate (c = 0) at zero

angle of attack (a = 0), M = 1;

for all angles of attack a > 0,
Mcr = 0. This is explained by 0 0.o4 0.08 0.12 076 c

the fact that near the leading

edge of an infinitely thin flat Figure 14.4. Effect of

plate there arise large local profile relative thickness

flow velocities and the local

Mach numbers M > 1.

With increase of the profile relative thickness, the local

Mach numbers near the now rounded and thickened lealing edge first
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decrease and then increase, since further increase of the relative

thickness, beginning with some value of F, leads to constriction
of the gas stream filaments downstream of the profile leading edge.

Co:respondingly, Mcr first increases and then decreases.

For an asymmetric profile at a = 0 the local maximal velocities

will be lower and the values of Pmin incom will be larger, the

tninner the profile. Consequently, M increases with reductioncr

of the profil -c relative thickness.

Judging by some experimental data, not only the profile rela-
tive thickness F but also the relative abscissa i has an effect on

c

the pressure distribution (Figure

14.5). For small angles a (or

for small values of cy) Mcr in- CMzs

creases with increase of c' C

while for large angles of attack tlx I
M decreases.

For symmetric profiles the

value of Mcr reaches a minimumcr I
at a = 0 or at cy = 0, and the

maximal pressure rcduction above I

and be]ow the profile are equal.

Por asymretric profiles the Figure 14.5. Effect of

iaximal value of M is cbtained profile maximal thickness
cr location on pressure dis-

at that angle of attack a (or tribution

for that value of c y) for which

the mrxrimal pressurc reductions above and below the profile are

equal. U-u,.Ily th"1 occurs at small negative angles of at*, ck.

With incri<a -cf r profile camber, there is an increase of the

value oft f, v 4, the maximal value of Mcr in reorhe.
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Now let us examine the flow structure ab, 4 wing profile

in a stream with M" > Mcr . As was shown abovc, for M > Mcr the

flow velocity becomes equal to the local sound speed at some point

of the profile surface, and the minimal value of the pressure coeffi-
cient is reached at this point. With further increase of M a

supersonic flow zone is formed downstream of this point, usually

closed by a compression shock. The location of the compression

shock and the extent of the supersonic velocity zone depend on M.

With increase of M. the compression shocks, forming initially

on the upper surface, displace together with the boundary of the

supersonic velocity zone toward the trailing edge of the profile.

Then a supersonic zone is also formed on the lower surface of the

profile. The growth of the supersonic zone on the lower surface of

the profile takes place more rapidly than on the upper surface.

Therefore for some M. < 1 the closing compression shock on the lower

surface overtakes the compression shock on the upper surface as it

travels toward the trailing edge of the profile. When M. approaches

one, the supersonic zones encompass nearly the entire surface of the

profile.

The supersonic zone ahead of the compression shock, resting on

the profile and bounded on the left by the subsonic flow velocity

zone, is shown in Figure 14.6.

We note that the boundary layer, which forms on the wing sur-

face as a result of frictLon, has an effect on the shape of the com-

pression shock. It has been established experimentally that, if the

boundary layer ahead of the cumpression shock is laminar, then near

tne boundary layer the normal shock splits and takes a sort of

,X-shaped form (Figure 14.7 . The forward leg of the lambda shock

is an oblique compression 3hock while the aft leg is a continuation

of the basic normal compression shock.
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1~.l4.6. Air- flow past Figure 114.7. Flow past profile for
Profile for lI, Mcer MO> Mcer with transition of laminar

boundary layer into turbulent

Upo n increase of' Re the

laminar boundary layer becomes3

turbulent and the shock changes a

its shape. These changes lead

to oscillations of the loads

on the profile.

if the boundary layer

ahead cf the compression sb.ck

is turbulent, only a singl', Figure 114.8. Division of bound-
ary layer into subsonic and

normal compression shock is supersonic regions:
formed in the supersonic zone. 1 -bunry lyrsproi

Inti cs F-rvthe e-region; 2 - boundary layer
in tis cse n:'1v en~sub, cnlc region; 3 - high-

tire L ,'..,ai'y ±.ayev is super - pressure region; 14 - direction

SOII ?.'m e nor!:mal compression of pressure equalization

sjcc( ealyrests on the wall

an Is most stable.
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§14.3. Pressure Distribution Over Profile in

Presence of Local Compression Shocks and

Profile Wave Drag Calculation

Let us isolate a thin stream filament at the wing surface. In

the absence of friction the flow in the stream filament can be

likened to the flow in a Laval nozzle. We shall examine three

characteristic flow cases (Figure 14.9).

1. For M.0 < Mcr the flow B

is subsonic along the entire /

stream filament. Up to the
minimal (critical) section p A

W the velocity increases & P t
cr JO 9.-

while the pressure decreases; '.=

benind this section, convepsely,

the velocities decrease and the ..
pressure increases, and the

-I

2. For M = Mcr the
-1 I

velocity at the c-itical sec- 0 £
tion equals the local sound

speed, while the flow is sub-

sonic at all the other sec-

tions. The critical pressure Figure 14.9. Pressure distri-

(see Chapter X) is p cbution over profile for differ-
cr ent values of M

0.528 pO, where p0 is the pres-

sure at the profile forward

stagnation point.

3. For M. > Mcr a local zone with supersonic flow appears be-

hind the critical section and is closed on the right side by the
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normal compression shock AB. The pressure variation curve for

Y4 > Ml is shown in the lower rigur-.

Now let us turn to the calculation of the so-called wave drag.

The shocks which form on tie wing surface give rise to wave drag

(wnich reaches significant magnitudes even for streamlined bodies),

caused by energy dissipation in the compression shocks and friction
variation in the boundary layer. The wave drag can be found by

j -;: rthe C. A. Khristianovich-Ya. M. Serebriyskiy or Burago methods.

We s-.ail examine the Burago method. Let us assume that a local

superscnic zone forms on the upper surface of the wing (Figure 14.10).

We isolate in the flow an ele-

mertary scream filament passing y

Lhroa-h the compression shock, I _
I 4dy,_A d~

and we identify the two sections t± / d..

i and !1 in tne flow at suffi- .h I
P, A C ~]a

ciently great distance ahead of V.

and b. ind tne profile. We as- £ ,

',me the gas parameters at these I

sections to be unperturbed and

denote them respectively by the

subscripts I- and 2- (we denote Figure la.0. Scheme for

the gas parameters ahead of and calculating flow past wing
profile in presence of

bcr)t.jd the nock ty the sub- normal shock

2ipt an( 2, rt.spectively).

Frov: t," Londition of flow

coti:, y in th? 3Lrear filament for the two 6ections,we can write

p ,V j td = =P2-V 2 dy2 ." ( 14 .1l)

As.suming thau dy,, , = dy2o = dy, in accordance with the jmentum

cheoren %.;. ha'.,e
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-- p,.V..dy,.--= (Ps--P 2 .)dy-X. (14.2)

or, transforming (14.2) with account for (14.1), we obtain

X.= .(p,.-p,.)dy+ j p,.. V 1 (V,..--V2 .)dy. (14.3)

in the absence of compression shocks, i.e., for continuous

isentropic gas flow past the profile, it follows from this formula

that X. = 0.

If we consider that the pressure p is recovered at the second

section and takes the same value as at the first section, and that

V2c = V in all the stream filaments which do not cross the com-

pression shock, then

iM S (P.--P2)dy=O

and

OM l Pr 1.V1. (V--V-)dy=O.

Then (14.3) takes the form

Xs= p,.V,.(V..--V)dgy1) (P.-- -P-)dY, (14.4)
i.3) (S)

where s - is the length of the compression shock.

If we follow Burago and assume that the velocities equalize

behind the wing, i.e., Vl % V2- , and assume that p,. = const

(unperturbed flow), then (14.4) can be reduced to the form

.. (:4.5)
X2=Pi. I - P2 dy.

fit)
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Since

P2. ____ ___2

2 2

then for the same velocities

,P P2-

Pot P-

wnere a - is the total head loss coefficient. For all the stream

filaments which do not cross the compression shock

a = 1.

Considering (14.6) and noting that

P,-V,.dy-- =PVjds,

or

dyl-.=dy== P',V1 ds,

we obtain the formula for finding the magnitude of the wave drag

in the form

X = p,~. SL_ (I~ -- 11).7)
P..V1- -14.7 )

We see from (1!7) thp, with decrease of i the value of Xw

increasc.,. Since o < I across the compression shock, the wave drag

X > 0. With reduotion ,t' o and Increase of the compression shock

length u, the value o,' Xw will ir-crease.

The wave drag cuefiient equls

*e U4.8)
V2
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Burago recommends the following formula for determining the

wave drag coefficient in the first approximation

(14.9)

where M. < Mcr + 0.15;

A is a coefficient which depends on the profile type and

pressure distributio!. The average value of this coefficient for

subsonic profiles is about 11.

The nature of the pressure distribution along a symmetric pro-

file at zero angle of attack in the presence of a compressior shock

on the upper surface is shown
in Figure 14.11. The pressure -,

distribution corresponding to / J

the flow pattern on the upper w- A

surface is shown on the lower V. P /

surface of the profile. The

pressure p0 is maximal at the

stagnation point. Further

along the profile, the pressure

decreases and reaches the value
Figure 14.11. Pressure distri-

Pcr at the point A, where the bution over upper surface of

velocity V = a o. In the profile for 1 > M, > Mcr

supersonic zone AB the pressure

decreases still further and only increases abruptly at the compres-

sion shock BC. Behind the compression shock the pressure continues

to increase to the value of the stagnation pressure at the profile

trailing edge (curve GH), and the flow velocity decreases.

We note that, if the deceleration of the supersonic flow were

to take place without compression shocks, then for the same velo-

cities the pressure on 'he aft portion of the profile would be

higher and would vary along curvc KG'H'. Thus, in the presence

of a compression shock the pressure on the "aft portion of the
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4

profile decreases in comoarison with the shock-free flow case,
which is the factor leading to the additional drag which is termed

wave drag.

All the analytic techniques for determining the wave drag

coefficient for .4 > Mcr are very approximate. More exact results

can be obtained only by experiments.

REVIEW QUESTIONS

1. Define the critical Mach number and list the factors on

which M depends.

2. What is the reason for the appearance of local compression

shocks on a profile?

3. How do the coefficients Cx and c vary wita increase of M?x y

Show graphically the dependence of these coefficients on M.

4. How does the profile aerodynamic center location vary
for 1 > M cr?

5. What is the physical meaning of wave drag? How do profile

thickness, camber, and angle of attack affect the magnitude of the

wave drarg in tho transonic flow regime?

PROBLEMS

i. For low-speed flow past a profile it is found that

Pmin incom --0.75. Ftnd the critical Mach number for the profile.

Answ-r • fo, 0.6.
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2. In low-speed flow past a prcfile, the maximal velocity at

the surface was 1255 of the freestream velocity. Find the value of

Mcr and the corresponding flow velocity for flight at an altitude

of 8000 m. I

Answer: M = 0.65, V = 720 km/hr.
cr vc

3. In the process of testing a wing profile in a high-speed

wind tunnel with air temperature 2600 K and freestream pressure

p, = 6000 N/rm2 , it was found that Mcr 0.72. Find the magnitude

of the minimal pressure on the profile.

Solution. From the Khristianovich curve in Figure 14.3, we find

the minimal static pressure coefficient: P = -0.4.
min

According to (6.9)

-Pmin-p-P~nim . A

2

Hence
pV

2

P~P.+-p.i 2 (a)

To find the density we use the equation of state (1.2)

P P.
RT

We find the magnitude of the velocity using (1.19) and (1.18)

Substituting the values of p and Vc into (a), we obtain

Pmin=p.( 0--pmiM 2k) 6000( -0 ,4.0,722.I,4)= 1643 n/.2.
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FOOTN~OTES

Footnote (1.) on page 741: Trudy TsAGI, No. 48, 181, 194IQ.
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CHAPTER XV

WING PROFILE IN SUPERSONIC FLOW

E15.1. Characteristics of Supersonic Flow Past

Bodies. Flat Plate in Supersonic Flow

The general problem of suoersonic flow past bodies with a

rounded nose, in which as . result of flow deceleration a curved

(detached) compression shock forms ahead of the body, belongs to

the class of "mixed" hydrodynamic problems, since there are regions

in the stream with supersonic and subsonic flows. The complexity

of the problem lies in the fact that the boundaries of the compres-

sion shocks cannot be determined in advance and, moreover, the

supersonic gas flow behind the curved compression shock is

rotational.

In contrast with the mixed problem, in the case of supersonic

flow past a profile with sharp leading edge at small angle of

attack,the bow shock is attached to the leading edge of the profile

and breaks down into upper and lower oblique compression shocks.

There are several methods of differing precision for the solution
of problems of flow past such profiles, which make it possible to
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obtain simple computational formulas. We shall restrict ourselves

to consideration of the problem of the flow past a sharp-nosed

profile at small angle of attack. We shall examine the simplest

case: supersonic flow past a flat plate aligned at the angle of

attack a (Figure 15.1).

figure 15.1. Supersonic flow past flat plate

The flow divides into two parts at the leading edge. The upper

part of the flow is turned through the angle a and expands in a fan

of characteristics (or weak disturbance lines). At the trailing

edge the flow changes direction and tends to recover the initial

direction, turning through the angle a and being compressed.

T ivs, the upper part of the stream flows around a concave

corner at the trailing edge and a compression shock develops here.

The reverse picture is observed in the lower part of the stream.

Near the leading edge of the flat plate a compression shock is

formed, while near the trailing edge the flow expands in a fan of

characteristics. For small angles a the expan.,,ion (or compression),

as mentioned previously, takes place practically in a single char-

acteristic, coinciding -,ith the perturbation line.

If the z a ts positive, the pressure on the lower surface

of the plate will b- greater than that of the freestre:.ii flow,
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i.e., p, > p," while the situation is reversed on the upper

surface.

The resultant force R, equal to the difference of the pressure

forces, is perpendicular to the plate and for a > 0 is directed

upward. Thus, the resultant force per unit span of a plate with

chord b is

R=p)b.

The projection of the resultant force on the freestream velo-

city direction yields the drag force, termed the wave drag and

denoted by X w!
X.-(- p.) b sIn&;

or, considering the smallness of a,

X.--(p.- p*)b..

The wave drag results from the energy expenditures in forming

wave disturbances in the flow.

The projection of the resultant force R perpendicular to the

freestream velocity is the lift force Y

Y=(p.-.) b coss a,

or, considering that for small angles cos a z 1,

Y= (p. - p.) b.

For positive and small angles a, we can find the pressure

increase below the plate from (10.46)

p£--p.Vt (15.1)

FTD-HC-23-720-71 89



and the pressure reduction above the plate

p.p=,v.VM.-, (15.2)

Then we obtain the difference between the pressures on the lower

and upper surfaces of the plate in the form

p,-,=a.v' 2"

(15.3)

Tne lift and wave drag per meter of plate span are

Y= P.V2. 24
(15.4)

2x. . (15.5)

Considering that S = b - 1, from (15.4) and (15.5) we find the

formulas for the plate lift and wave drag coefficients

e -U(15.6)V -I
4_ , (15.7)

__ _ (15.8)cz 3 ,= C.

We see from these formulas that the lift coefficient c y is

directly proportional to the angle of attack a and can change its

sign depending on the sign of a; the wave drag coefficient cx w i

depends quadratically on a and is always positive. Both the coeffi-

cients Cy and cx w i a:e inversely proportional to 1/M.-1 and de-

crease with increase of MC.
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Since the wave drag coefficient cx w i is proportional to the lift

coefficient squared and equals zero for cy = 0, it is termed the

wave-induced drag(l ).

We note that (15.6) and (15.7) are applicable in practice only

when the compression shock extending downward from the nose part of

the profile is a rectilinear attached shock with a > 0. It is

assumed that for m) approaching unity the angle of attack a must

approach zero. Otherwise the relations obtained will not be valid.

We should point out the fundamental differences between super-

sonic and subsonic flow past a flat plate. In supersonic flow the

nose of the plate splits the flow and the streamlines are parallel

to the plate; the differential pressure and the pressure coefficient

are constant on the upper and lower surfaces or the plate and are

equal in magnitude and opposite in sign (Figure 15.2). It is obvious

that the center of pressure (point D) and focus of the flat plate

are at the midpoint of the chord in this case.

In subsonic flow a sharp suction peak is created near the nose

of the plate on the upper surface, and a large positive pressure on

on the lower surface. The

pressure varies along the

length of the plate,and the . Upper surface

center of pressure (D) at.d - i
focus are located about 1/4 ___0 1

chord from the nose (Figure ,1

15.3). .P

With account for fric-. 2 Lower surface

tion, the drag coefficient

of a plate of infinite span Figure 15.2. Pressure coefficient
distribution over flat plate in

will be made up of two terms supersonic flow

Footnote (1) appears on page 107.
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-.e , + cj 2 4 (15.9)

where c xf -- is the flat plate

friction drag co-

efficient calcu-

lated by the

methods of bound-

ary layer theory.

Substituting into (15.9)

the value of c per from (15.8), U r surface

we obtain the equation of the

flat-plate polar LesfLowersurfce

Sc+2c. (15.10)

Figure 15.3. Pressure coeffi-
cient distribution over flat

We see that the flat-plate plate in subsonic flow

polar is a quadratic parabola.

For values of cy differing from

zero the polar will shift to the right with increase of M.

§15.2. Pressure Distributi(,n Along Profile

Let us examine the pressure distribution pattern on a

symmetric profile in subsonic and supersonic flows.

In the case of subsonic flow about a symmetric profile (Figure

15.4a), the stream filaments first expand somewhat in the nose

region, which leads to increase of the pressure and decrease -f the

velocity; and then tlpey converge rapidly, as a result of which the

pressure decreases and the velocity increases. Then in the aft

region of the profile the stream filaments again expand, as a result

of which there 7s a le-rease of the vElocity and increase of the

pressure.
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Figure 15.4. Comparison of subsonic and supersonic flow
past profiles:

a - subsonic; b - supersonic; 1 - ideal fluid; 2
-.4scous fluid

In the case of supersonic flow past a profile the pressure

distribution pattern is somewhat different: upon reaching the bow

compression wave,tLe stream filaments change their direction

abruptly, which leads to decrease of the velocity and increase of

the pressure (Figure 15.4b). Then the velocity gradually increases

and the pressure decreases along the profile surface back to the

trailing edge. The pressure increases abruptly in the tail shock

wave, but this now has no effect on the pressure distribution along

the profile.
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Thus, in the subsonic flow

case there is recovery of the

pressure on the aft part of the

profile, while in the supersonic --

flow case the pressure is not .

recovered prior to the trailing P I1 '
shock wave. M-Z4 I

4o wv 
Upper surface

We see from the pressure II
distribution diagram that for U$ 5

subsonic ideal fluid flow past Lower surface rofile . |

a profile the projection of the

resultant aerodynamic force on e- Linear theory

the flow direction is equal to 0,2 '-Experimentfi

zero, while for supersonic flow 5 6

past the profile this prujec- Figure 15.5. Comparison of

tion yields the so-called theoretical and experimental
values of pressure coeffi-

wave drag. cients of a symmetric profile

If the fluid is viscous, an

additional drag force appears

owing to the friction force in the boundary layer. However, in

this case t ht wave drag is again the basic part of the total profile

drag, which in be represented in the form of the sum

x=x.+x..

Figure 15.5 shows a comparison of the theoretical and experi-

mental values of the pressure coefficients j. We see from the

curves that linear theory yields values of the pressure coefficient

which are too high in the low pressure region (on the upper side of

the profile) as we mcve aft from the leading edge and values which

are too low on the lower surface of the profile, particularly near

the lcading edge.
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§15.3. Thin Profile in Supersonic Flow

Let us examine supersonic flow past a thin profile of arbitrary
shape with chord b and span Z = 1 at the angle of attack a

(Figure 15.6).

We identify on the lower

surface of the contour the ele- f-'

mentary segment dl, whose in- I | O.M

clinations to the Ox axis of I
the body coordinate system and <
to the freestream velocity

direction are denoted by yZ and - I
and a__:________

Figure 15.6. Supersonic flow
past thin profile

According to (15.1) the

differential pressure on the element dZ is

. . i

If we denote the projections of dZ on the coordinate axes by dy, i

and dx, = dx, we obtain

dx

For a thin profile in view of the smallness of the angle y1,

sin y y,. Consequently

d ,, (15.11)
lU dx

The elementary differential pressure force applied normal to

the lower surface element in question is

dy,,
dR.= Ap.dl=p.Vt"  dx dl.
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Then the projections of this force on the coordinate axes and the

elementary moment about the profile nose are, respectively,

dY.=Ap~cosy.==Apgdx

dX,= Apdl sin y Apdx= -Ap. A- dA

dM._- dYx.

We neglect the moment of the projection dXz by virtue of its small-

ness in comparison with dY..

The overall forces and moments for the lower surface of the

profile are

Y.=5A~dx

dx,

We see from Figure 15.6 that the quantity. d*- dx.O. Then

.=

S fldlar expressions can be obtained for the profile upper

surface.

FTD-HIC-'3-120-71 96



The forces and moment acting on both sides of the profile,

defined in the body coordinate system, will be

F.V, f dg,%2.

+ y dy-

JWMp,4.= IVt (- 2 2 h, xd /
______dx

Here the force Y is normal to the profile chord; however, in view

of the smallness of the angle of attack a it is essentially the lift

force Y as well.

The lift coefficient

Cu 2

Considering that S = b • 1 = b and substituting the value of 1, we

obtain

C11= (15.12)

This formula implies that the lift coefficient is independent

of the profile form and thickness and depends only on the angle of

attack, and for the same conditions is equal in magnitude to the

flat-plate lift coefficient (15.6).

The drag X has the direction of the velocity V,. Projecting the

forces Y1 and X, on the direction of the freestream velocity V, and

c. nsidering that the angle a is small, we cbtain

x= YII+X, (15.13)
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x= V +dy,, 2 d )

Hence the wave drag coefficient is

4zO .4 +" (15.14)

where

2 fLyay. "'+ 1 dx
b 0 LVdx.- k-

We represent the profile ordinates in terms of its thickness

Differentiating, we have

dy1  d, dy1  g
dx b. d"x' dx btd

where

*, X=x/b.

Then

B =Kic2,

where _

77 )dx .

The function K depends only on the profile shape.

With account foz, tine expression for B, (15.14) can be written as

44 C= ,,+ o. (15.15)
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Thus, the profile wave drag coefficient is the sum of two drag

coefficients: the wave drag coefficient Cxvi of a profile of zero

thickness at the given angle of attack, and the minimal wave drag

coefficient Cxwo, equal to (cxw)a = 0

The wave drag coefficient of the profile of zero thickness

R'= 0) is also termed the wave-induced drag coefficient, since it

depends on the profile lift coefficient

42 =CA.

This implies that the coefficient cx w i is independent of the

profile form and thickness and is expressed by the same formula as

is the flat-plate wave drag coefficient (15.7).

The minimal wave drag coefficient (for a 0) is

C~ o ).

+ dy ~ Jdx:(13. 16)

This coefficient for given M, depends only on the profile form and

relative thickness.

With account for the friction forces, the expression for the

drag coefficient of a thin profile at small angle of attack has

the form

(15.17)

where cxf - is the friction drag coefficient.
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From .5.17) arz:1 (15.12) we can obtain the equation of the wing

profile po...r ii; the form

4

The profile moment coefficient about the leading edge is

= M 2* +C.0, (15.19)

• 2

where S = b 1;

Cm0 - is the moment coefficient at zcro angle of attack

b

_O 2 dc

o2

or

id- -

- x d.
-i-- , x xdx. (15.20)

It follows from (152) that the coefficient cmO depends on the

profile shape. For the symmetric profile -t = on =0.dx dx mo

Then

CW3

Knowing the coefficients am and cy, we can find the dimension-

less abscissa of the profile focus

or
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Using (15.12) for e and (15.19) for Cm, we find that x = 0.5.

Consequently, the focus of the thin profile of arbitrary form in

supersonic flow, just as for the flat plate, is located at the mid-

point of the chord. According to (12.24) the center of pressure ts
at this same point, since for symmetric profiles Cm0O.

§15.4. Aerodynamic Coefficients for Some Typical

Profile Forms

Let us examine a triangular profile in supersonic flow (Figure

15.7). The derivatives appearing in the integrals (15.16) and

(15.20) will be numerically equal

to the inclinations of the profile

faces to its chord. A

On the segment OA 0

dx xc'

then Figure 15.7. Asymmetric

triangular profile

bj dy, b 1-

drX Cdx Xe XC

On the segment AB

rd------ ---- ,then --,_ 6-dy-
dx b-x, dx c dx

Dividing the region of integration of the integrals (15.16)

and (15.20) into two regions: 0 < x < x and xc < xF < 1 and substi-

tuting into each integral the corresponding value of the derivative

=.w, we obtain

dx
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- -= (15.21)

_______ (15.22)

It follows from (15.21) that for a given value of c the coeffi-

cient cX wO wll be minimal when the value of the product

becomes maximal.

To dezermine the value of x corresponding to J m we find the

derivative J and equate it to zero
dx

Hence we have

Thus, a triangular profile Figure 15.8. Asymmetric

for which the maximal relative rhombic profile

thickness 7is located at the

midpoint of the chcrd will have the minimal value of c For this

profile the wave drag coefficient is expressed by the formula

(15.23)

Let us examine an asymmetric rhombic profile in supersonic

flow. We can imagine that this profile consists of two trla'..ilar

profiles with relative t;hicknesses Fi and '2 (Figure 15.8). Then

the relative thicknes, of the rhombic profile is
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C=C1+C2.

By analogy with (15.22) and (15.23) we write the formulas for the

coefficients c andx wO m

C -CI (15.24)

Studying these formulas, we find that the minimal value of c

cwill occur for c 1  a 20= 2 , i.e., for the symmetric rhombic profile.

In this case the formulas for the coefficients have the form

M _1_ (15.25)

We see from the comparison of (15.23) and (15.25) that the

coefficient c 0 of a rhombic profile is half the coefficient cx wO

for the best triangular profile. Moreover, for the symmetric

rhombic profile the coefficient Cm0 = 0. This implies that the

rhombic profile is more suitable than the triangular profile in

supersonic flow.

Let us examine the lenticular profile with one-sided and two-

sided convexity (Figure 15.9), described by the parabolic arcs.

*1C

C C

bba) b)

Figure 15.9. Lenticular profiles:

a -with one-sided convexity; b - with two-sided convexity
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By analogy with the preceding derivations, we can obtain the

formulas for finding the coefficients c x WO and CmO.

For the one-sided convex lens

~f

4 (15.26)

For the two-sided convex lens

will occur in the case 2 = = -- For this profile
16 (15.27)

in comparing the symmetric lenticular profile with the sym-

metric rhombic profile of the same relative thickness, we find that

the drag coefficient of the latter is 33,% lower. Hence it is not
difficult to conclude that the most rational wing profile form in

scpersonic flow is rhombic or a similar shape, sinc2 profiles with

this form have minimal wave drag. However, with account for various
requirements imposed on the profile (for examples minimal overall

drag along with adequate strength and acceptable heating and su on)

other wing profile forms may be more efficient.
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We must also consider the viscous properties of the gas flowing

over the wing, the existence of the boundary layer, and sometimes

flow separation near the trailing edge.

In conclusion we note the following characteristics of the pro-

file in supersonic flow: the lift and drag are not proportional to

the velocity squared as in the case of subsonic flow. For example,

from the formula

=2p..VtS - 22~ _______

we see tha for V, > a, the lift is proportional to the velocity to

a power fr(,m 1 to 2, and for very large N , when

V.>a. and

the lift is proportional to t.e first power of the velocity.

REVIEW QUESTIONS

1. Write the formulas for the lift and wave drag of a flat

plate at the angle of attack a in supersonic flow.

2. Write the formula for the drag coefficient of a thin
profile at small angle of attack.

3. What advantages do the symmetric profiles have at super-

sonic speeds! How does the profile thickness affect the magnitude

of the wave drag at supersonic speeds?
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PROBLEMS

1. By what factor is the minimal wave drag of the rhombic

wing in supersonic flow less than that of the lenticular profile

of the same tnickness composed of circular arcs?

Answer: by a factor of 1.33.

2. Find the lift: wave drag, and moment coefficients for a

flat plate at the angle of attack a = 0.06 rad and = 2.

Solution. We find the coefficients cy, Cx, cm from (15.6),

(15.7), (15.8), respectively:

4 4.0.06 .=0,1385;

4a2 4.0,062C,=- . =0,00831;

1/;. 1  v2-1
CA 2c 2.06

-= - =0,0692.

3. Find cy and c x w for a rhombic profile of thickness 10.5%

in air flow with = 1.53 and c, = 0.12 rad.

Answer: c= 0.413; c = 0.038.
y x w
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FOOTNOTES

Footnote (1) on page 91: For more details on wave-induced drag
see Chapter XVI, §16.4.
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CHAPTER XVI

THEORY OF FINITE-SPAN WING IN INCOPRESSIBLE FLOW

§16.1. Wing Geometric Characteristics

The flow which develops around a wing and determines its

aerodynamic characteristics is a three-dimensional flow, whose de-

gree of deviation from plane-parallel flow depends on the wing form

and dimensions. The wings of modern airplanes are quite varied in

their geometric characteristics. The plane of symmetry divides tve

wing into left and right sides. Thc projection of the wing on the

plane perpendicular to the wing plane of symmetry in the x1 Oz 1 body

coordinate system defines the wing planform. The most typical wing

* planforins are shown in Figure 16.1.

Tne area and span are the primary quantities defining wing size.

By the wing area S we mean its area in plan view (Figure 16.2). The

wing span I is the distance between the two most distant points of

the wing along the OzI axis.

Pho wing profile in the plane of symmetry is called the root

profile. Irofile obtained as a renult of sectioning the wing by
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Rectangular

Trapezoidal

0
Trapezoidal

Elliptic

Swept

(Positive Sweep)
Swept

0 (Negative Sweep)

0 Swept with variable sweep
E-4 along the span (cresent)

Swept with "notch"

Rhombic

"4 Triangular (delta)

14'

"Swallowtail" Ogival

ogival

Figure 16.1. Characteristic wing planforms
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Figure 16.2. Wing geometric characteristics

planes par1lel to the wing plane of symmetry in the general case

vary along tne span in form, dimensions, and chord inclination.

A wing is termed geometrically flat if the chords of all the

sections are parallel to the x1OzI plane. If the profile chord

forms some angle e, whose magnitude varies from 0 at the root to c,

at the tip section (see Figure 16.2), with the x1Oy1 plane we say

the win - goe.,merically twisted and the angle e is the geometric

twist anne. Twist may be either positive or negative. By positive

twist we mean that In which the local angle of attack increases in

comparison with the angle of attack of the root section. Usually

negative twist is used in actua: designs.

Mhe wing projecl-'4 , on the plane parallel to the ylOzl plane

may ha%- jr,, ," te root section. In this case we say that the

wlng has dinkral. .J h may be either positive or negative. The

Tran sl tor'b Note: -its subscript should designate tip, not
root a; indicated ', foreign text.
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dihedral is characterized by the angle * between the direction of
the Oz1 axis and the projection of the wing leading edge on the

ylOzl plane. The wing may have a form such that the angle is

variable along the span.

The ratio of wing area to span is called the mean aerodynamic

chord
-- S

An important geometric characteristic of the wing is the aspect

ratio X, equal to the ratio of the wing span to the mean aerodynamic

chord

It is obvious that X = 12/S. The aspect ratio determines the

degree of elongation of the wing along the span and has considerable

influence on its aerodynamic characteristics. For subsonic air-

planes A = 6 - 12, and for supersonic A = 2 - 3. The wing profile

characteristics coincide with those of a hypothetical wing with

The wing spanwise taper ratio is defined by the quantity

b coan

where b r and bt are, respectively, the chords of the root and tip

sections.

For a rectangular wing n =1; for a triangular wing n = . In

the general case I .oo-

It is very difficult to give a general definition of the geo-

metric parameters for all wings because of the great variety of
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wing forms of modern flight vehicles. For example, all the para-

meters listed above are inapplicable for annular wings.

§16.2. Aerodynamic Mode] of Finite-Span Wng

In deriving the Zhukovskiy lift theorem we examined plane-

parallel, potential, separation-free fluid flow past a cylindrical

profile of -nfinite span. Since in accordance with the Zhukovskiy

theortirm the lift of a wing of infinite span is determined by the

magnitude of the circulation around Po contour enclosing the wing, in

the first approximation with regard to the force effect on the free-

stream the wing can be replaced by an infinitely long vortex filament

with circulation about the contour enclosing the vortex filament

equal to the circulation around the wing. Such a vortex filament

is called a bound vortex. Thus, a rectilinear infinite vortex can

serve as the aerodynamic model for a wing of infinite span.

For a finite-scan wing the flow has a three-dimensional rather

than plane-parallel nature, particularly near the wing tips. In

this case the wing tips affect the pressure distribution over the

entire wing surface.

Let us picture a wing of infinite span in rectilinear flight

with constant velocity. If a lift force Is developed on the wing,

there is ; low-pressure region above the wing and a high pressure

region below the wing. The pressure difference leads to air c .oss..

flow arcid the wingtips from the high-pressure region into the low-

pressure region. Flow parallel to the span develops, with the flow

telow the wing being directed toward the wingtips and the flow above

the wing directed toward the centarsection (Figure 16.3).

As a result of .turaction of the upper and lower flows, a
vortex sbeet is Po-id behind the wing. The vortex sheet consists

of vortex filaiiont wnich originate at the trailing edge of the

wing and remain In ,e stream.
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Figure 16.3. Vortex sheet formation behind finite-
span wing

The vortex filaments which constitute the vortex sheet are

termed free vortices. We can assume that every two symmetrically

located free vortices are closed at the wing by a corresponding

bounC vortex (of the same intensity). Therefore the vortex sheet

together with the bound vortices can be represented as an assemblage

of horseshoe vortex filaments (Figure 16.4). Thus, an assembly of

horseshoe vortices consisting of bound and free vortices can serve

as the aerodynamic model of the finite-span wing.

The circulation dr along each elementary horseshoe vortex fila-
ment is constant; however the circulation varies along the wing span.

Theoretical analysis and experiments show that the vortex sheet

behind the wing is unstable; at some distance from the wing il; rolls
up into two powerful vortex lines (Figure 16.5). Such t-ailing vor-
tices can be observed both under laboratory conditions and in flight
(for example, during flight in fog or when spraying chemicals).
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Figure 16.4. Vortex system of finite-span wing

Figure 16.5. Transformation of vortex sheet into
two trailing vortices

In '--p roximate calculations the vortex system of a finite-span

wing can be represented by two fret, vortices trailing from the wing-

tips and closed by a single bound vortex (Figure 16.6). In t.sso-

called r,)rsashoe aerAyiamic model of the wing, the circulati on is

constant .;.cng the 4ing span . I n many cases this simplified aero-

dynamic mcu-l of ti,, wing makes i t possible to carry (tit calculations

which are :f1.fciently accurate for practical purposes.
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Chaplygin maIe one of

the first studies devoted to

finite-span wing theory. In

his report Results of Theo-

retical Studies of Airplane

Motion (1910) he noted the

presence of vortices trailing .

from the finite-span wing.

In 1912 Zhukovskiy in his Figure 16.6. Simplest vortex

report Vortex Theory of the scheme of finite-span wing

Propeller (first article)

outlined the fundamental bases of propeller and finite-span wing

theory. In 1913 in a work on finite-span wing theory Chaplygin

obtained general expressions for the lift and drag of the finite-

span wing. In the same year Zhukovskiy in his study Vortex Theory

of the Propeller (second article) obtained the vortex scheme of a

lifting body with continuous distribution of the circulation and

vortex sheet behind the wing body. The vortex scheme with variable

circulation was the basis foi subsequent studies on wing and pro-

peller theory.

The Zhukovskiy scheme was later used by many scientists, in-

cluding Prandtl, who in 1918 obtained the equation defining the

circulation variation along the wing span.

§16.3. Downwash at the Wing. Induced Drag

A characteristic feature of the flow past a finite-span wing

is the presence near the wing of the so-called downwash: as the

translational flow approaches the wing, it is deflected from its

original direction. The flow deflection begins far ahead of the

wing, growing gradually in the downstream direction. This deflection
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is due to the system of free vortices, which in accordance with the

Biot-Savart law induce a velocity field in the fluid mass surround-

ing the wing. The velocities V caused by the free vortices in the
y

plane of -the wing are directed vertically downward and vary both

along the-wing span and along its chord. The velocities Vy, com-

bining geometrically with the approaching translational velocity V.,

create a flow whose streamlines are curved in the vertical plane.

At any wing section (Figure 16.7) the resultant velocity V,' is

directed at the angle Aa to the original flow direction. Conse-

quently, Aa is the downwash angle at this section. The downwash

varies along the wing span, increasing toward the tips.

Figure 16.7. Velocity and force triangles for
finite-span wing

We shall denote the average velocity Vy along the span by Vyav.

Then the average downwash angle Aacav is found from the relation

tg AU,~ -Y -

Since the anglj Aa is usually small, we can write

tg Ac Ac = - _ (16.1 )

V.
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The true angle of attack of the wing, measured with respect to

the actual direction of the approaching flow, will differ from the

geometric angle of attack a by the magnitude of the downwash

angle Axav

(16.2)

According to the Zhukovskiy theorem, the force with which a

plane-parallel ideal-fluid stream flowing over a wing presses on the

wing is equal in magnitude to the product of the fluid density by

the magnitude of the flow velocity at infinity and by the magnitude
of the velocity circulation around the wing. The direction of this

force is obtained if the velocity vector of the flow at infinity is

rotated 900 opposite the direction of the circulation.

In accordance with the Zhukovskiy theorem, a force Y' perpendi-

cular to the vector V. must act on the wing.

The component of the force Y' perpendicular to the unperturbed

flow direction

Y=YCosfAtC-Y',
(16.3)

is the wing lift force.

The component of the force Y' along the flow

X=Y' sI AU'pYAaC, (16.4)

is the wing induced drag.

Thus, when an ideal-fluid stream t .,s past a finite-span wing

the presence of the free vortices trailing from the wing gives rise

to a special sort of resistance which is not associated with vis-

cosity - induced drag.
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§16.4. Approximate Calculation of Induced Drag

We see from (16.4) that the wing induced drag is determined by

the average downwash angle, whose magnitude in accordance-with

(16.1) is

For the approximate determination of the average downwash
velocity V yav we replace the wing by the simplest vortex system -

the horseshoe vortex. The action of this horseshoe vortex must

cause the same lift and induced drag as the real wing (Figure 16.8).

AY

"4'

Figure 16.8. Illustration for calculating average down-
wash velocity

According to the Zhukovskiy, theorem the formula for determining

the lift force of the bound vortex, expressed in terms of the cir-

culation r of the horseshoe vortex and the distance 11 between the

free vortices, has the form

Y==QV.Ir,.

On the other hand, the wing lift can be expressed in terms of the

wing AJLf coefficient C
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where S - is the wing area.

Equating the right sides, we obtain the so-called coupling equation

r=+Ci!v.-(16.5)

Thus, the value of the horseshoe vortex circulation, i.e., the

average circulation along the wing span, is found from the condition

that the specified lift be provided.

A more detailed analysis (not presented here) shows that, for

the induced arags of the horseshoe vortex and the real wing to be
equal, it is necessary that the distance Z1 between the free vortices

be somewhat greater than the wing span t

I,=Ik, where k>I.

The quantity k depends on the wing planform and aspect ratio, and

varies in the range from 1.02 to 1.04.

The average velocity across the span caused by the free vor-

tices is

VM - V.(z)dz.
I

We calculate the velocity V (z) induced at an arbitrary point 1,
y

lying on the lifting vortex line (Figure 16.8), by the Biot-Savart

law, applying it in turn to the left and right free vortices. Noting

that the free vortices are semi-infinite, we can write for Vy (z)

v,(Z)=v,.'(Z)+v,(z) -1 4.
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This relation shows that as we approach the right vortex the quantity
V (z) grows as a result of the increase Df Vyr and at the same ttie
y J

V , decreases. With approach to the left vortex (here z is negative)
Y, 

%

V (z) grows as a result of the increase of Vy. Figure 16.8 shows
y 

the variation of V along the wing span.

Now let us substitute the value of Vy (z) into the expre.ssion

fo V
yav

+1 +

- d- dz

VY ,P 4In11. 1 -

We have for the average downwash angle

vc,.- V .cp Ir i 11 + 1ra' In l+V.. xtlV.. IT-i

Itf we now substitute in place of the ci.cuiarion r its Expression

(16.5), we obtain

* - -- ~11 li+1Aap= -s- In ' +
A4g,11 1  I11- 1

xpi'e.si .1 in terms of 1(1i = 1k) and then replacing 12 /S

by (a.p.ct. ratio), we obtain

A(cpj c
4A k k-1

Ij we consider that k varie', in the range 1.02 - 1.04 as a
function of the ving glanform, then 1n n amounts to - aatitity

some -a" -r' nte- 1,i.an 11. Then
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where A depends on the wing planform.

The formula for determining the average downwash angle takes

the form

A ,----- -(1.+A). (16.6)

We see from this formula that the larger the aspect ratio A,

the smaller is the downwash angle Aav. In the particular case of

a wing of infinite span X , and therefore Acav - 0.

av
Substituting into (16.4) in place of A av its value from

(16.6) and replacing Y, we obtain the expression for the induced drag

ial 2

Hence the induced drag coefficient is

Q2

2S

We see that the approximate calculation yields values of cxi

and Acav which are accurate to within the factor 1 + A, somewhat

larger than one.

Analyzing the relations obtained, we can draw the following

very important conclusions:

1. The magnitude of the induced drag is larger for larger Cy

and varies parabolically as a function of cy. The curve representing

Translator's Note: A missing 1n original text.
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this relationship is called the induced drag parabola (Figure 16.9).

In real viscous fluid flow, in addition to the induced drag the wing*

also experiences resistance resulting from viscosity - profile drag.

Therefore the total drag coefficient of the finite-span wing can be

represented in the form of the sum

csc1+ cuSP.
CY

If the wing polar is given, with

the aid of the induced drag 2

parabola we can separate the

profile drag coefficient cxp

from the total drag coeffi-

cient cx.

2. The magnitude of the

induced drag depends markedly

on the wing aspect ratio A. Figure 16.9. Induced drag

For wings with large aspect parabola (1) and wing polar

ratios cxi is smaller. In this (2)

connection, the wing aspect

ratio is made as large as possible in order to obtain wings with

large values of the aerodynamic efficiency K = We must bear in

mind that this entire discussion relates to wings which do not have

structural elements (endplates, for example) which reduce the in-

duced drag. Since the induced drag is determined entirely by the

presence of the free vortices, which appear as a reaLlt of air

crossflow around the wingtips, the installation of endplates at the

wingtips prevents this crossflow and reduces the induced drag.
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§16.5. Calculation of Forces Acting on Finite-Span

Wing with Variable Circulation

The theory of the finite-span wing presented above can be con-

sidered a first-approximation theory. In a more exact calculation

of the forces acting on the wing, it is necessary to take into ac-

count the variation of the circulation and downwash angle along

the span.

In deriving the computational formulas for the finite-span wing

with variable circulation (vortex sheet scheme),we shall assume that:

a) the air flow around the wing is induced by a system of

vortices;

b) the free vortices of the sheet are rectilinear and directed

along the velocity of the undisturbed stream;

c) each wing section has its own angle of attack and is inde-

pendent of the other sections.

These assumptions make it possible to apply the Zhukovskiy lift
theorem to each of the wing elements. We imagine a wing of finite

span in reversed flow (Figure 16.10). A vortex sheet with running

intensity q--r#- , which is variable a~ong the span, extends behind

this wing. We isolate on the vortex sheet a narrow strip at the

distance z from the root section. The circulation around the con-

tour enclosing this strip is

dP= dr(z,) dzj.
dzj
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At an arbitrary point B on the Oz axis, defined by the coordi-

nate z, the vortex strip induces the velocity
dr( ,) z

dV,(z)= dz,
4,(z,- z)

The total velocity induced at the point L by the entire vortex

sheet is(1)
2 dr(!) dz1

ZI-Z (16.8)

-Y

Hence we obtain the downwash angle at the section z (we neglect

downwash angle variation along the wing chord)

2 dr (z,_ )

Az(z)=- ) - dz (16.9)AcL,_ z, - . -n .--- 4V. , -

Since the downwash angle is variable along the wing span, the

true angle of attack will also be variable

a.C , a Aa (Z).

The geometric angle of attack at a given section can be represented

in the form of the sum of the geometric angle of attack ar of the

root section and the geometric twist angle e(z)

a=;a,-e(z).
Then tn. true angle of attack at a given section has the expression

aCT =a.-U-e(z)-Aa(z). (16.10

After determining the magnitude of the downwash angle at the

individual wing sections, we can calceulate the forces acting on the

wing. These forces are determined as the geometric sum of -

forces acting on the elementary sections of the wing.

Footnote (1) apper's on page 17,
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Figure 16.10. Definition of induced velocity at
arbitrary wing section

In calculating the forces acting on a wing element, in accord-I ance with the hypothesis of plane sections we shall assume that the

given wing element operates like the corresponding element of a

cylindrical wing of infinitely long span and that the forces acting

on the wing element are completely defined by the value of the down-

wash angle at this element. The hypothesis of plane sections yields

quite adequate accuracy for wings with 1>4..

According to the Zhukovskiy theorem the force acting on a wing

element is

dY'= Qr (z) V' dz,

where

V'=V.+V,(zW;

r(z) -- is the circulation around the contour enclosing the wing at

the selected element section.

The force dY' is directed perpendicular to the direction of the

vector V'. (Figure 16.11). Resolving dY' into the corresponding
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Figure 6.11. Calculation of forces acting on wing

components, we obtain the element lift

dY =Qr (z) v' cos Aa (z) dz

and induced drag

dX, =er(z) V' sin Aa(")dz.

Since the angle Aa(z) is small, these formulas may be written as

dY=er(z)V. dz;
dX 1= er(z) V.a(z)dz=-r(z) v,(z)dz.

Then the total lift is

Y=QV. S l(z)dz, (16.11)
£

and the total induced drag

1

Xi=-Q r i'(z) V,(z) dz. (16.12)

II
If we substitute into (16.12) in place of V(z) its vaue from

(16.8), we can write the expanded expression for the induced drag
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* (ZI (16.13)Pl- (z)[LS. dz.

The expressions obtained for Y and Xi make it possible to cal-

culate the forces acting on the wing in ideal-fluid flow with account

for spanwise variation of the circulation and downwash angle.

In this case the accuracy of the calculation will depend on how
close the actual wing operating conditions are to the assumptions

made (possibility of using the hypothesis of plane sections, small-

ness of the downwash angle, neglecting the downwash angle variation

along the wing chord).

§16.6. Determining Circulation Distribution

Along Wing Span

To determine the wing lift and induced drag using (16.11),

(16.13) we must find the circulation distribution r(z) along the

wing span.

Let us examine a wing element at an arbitrary spanwise location

as a segment of a cylindrical wing of infinite span with the given

profile (see Figure 16.11). We shall assume that the aerodynamic

characteristics of the individual profile sections comprising the

wing are known.

The lift force developed on the selected element can be ex-

pressed in terms of the circulation using the Zhukovski theoren or

in terms of the coefficient c
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dY=eI'(z)V-.dz;

dY=c,(z) s b(z)dz,

where b(z) - is the wing chord at the given sectidn.

Equating the right sides of the two expressions for dY, we

obtain the coupling equation for the wing section

r(z)=Lc,(z)b(z)V.. (16.14 )

In accordance with (1.2.16) the expression for c y(Z) can be written as

C,(Z) = ,e (Z) W. (16.15)

where ca = - in the range of angles of attack co.*'esponding to
y 3a

the linear segment of the curve cy(W = f(.);

al(z) - is the true angle of attack at the given section.

The true angle of attack (Figure 16.12) is expressed by the relation

(16.16)

2where a (z) is the aerodynamic angle of attack at the given sec-

tion measured between the linc--cf-flight direction

and the direction of the aerodynamic chord for the

given section;

Aa(z) - is the downwash angle at the given section.

If we now substitute into (16.14) c y(z) from (16.15), replacing

therein the true angle of attack a'a (z) by its value from (16.16)

with account for (16.9), we obtain

2 ~ ~ ~ ~ d c(z,))jo~H.~~ dii)f __ (z.l _ _d. (16.17)
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Figure 16.12. Determining true aerodynamic angle of attack:

1 - geometric chord direction; 2 - aerodynamic chord direc-
tion; 3 - direction of flight

This equation is termed the basic integrodlfferenblal equation

of the finite-span wing. This equation relates the unknown function

r(z) with known quantities and thus makes it possible to find the

circulation distribution along the wing span.

In the general case it is very difficult to find the exact

solution of (16.17). There are several approximate solutions of' the

basic equation, obtained by introducing simplifying assumptioas or

using various sorts of artificial methods (Glauert-Treffetz, Multhopp,

B. N. Yur'yev, V. V. Golubev, G. F. Burago, S. G. Nuzhin, and other

methods). An experimental method for solving (16.17) has also been

proposed, based on the analogy between hydrodynamic and electrodynamic

phenomena.

Most of the solution methods are based either on an approximate

representation of the function r(z) or the wing contour in series

form. For example, the Glauert-Treffetz method involves representing

the unknown function r(z) in the form of a trigonometric s~ne series

r(z)= V. t A. sm nO,.18
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where e - is a new variable, connected with the variable z

(Figure 16.13) by the relation

z=----COS9;
2

A n - are constant coefficients of the series, subject to

determination.

Since the terms of the series (16.18) decay rapidly, to express

the function r(z) with a satisfactory degree of accuracy we need

only take the sum of a comparatively small number m of terms rather

than the series with an infinite number of terms

r(z);V 2 AsnnS. (16.19)

To determine the m unknowli coefficients, which must be such

that r(z) satisfies (16.17), we must write m algebraic equations.

These equations can be obtained by substituting into (16.17) in

place of r(z) its value from (16.19) sequentially for m different

wing sections. It can be shown that for a wing with symmetric

circulation distribution along the span the terms of the series with

even indices vanish, and in this case the required number of equa-

tions is reduced. The values of the series coefficients can be ob-

tained by solving the system of algebraic equations.

Thus, the approximate expression for the circulation has

the form

r 21V.(AlsinO+Aasin39+ ... +A~sfnme).

Figure 16.13. Geometric repre-

sentation of connection between
0 Lvariables z and 0

z Iz
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§16.7. Wing Lift and Induced Drag Coefficients with

Account for Circulation Distribution Along

the Span

Knowing tht circulation distribution along the span, we can

find the forces acting on the wing. Converting in (16.11) from the

variable z to the variable O(dz = sin ode) and substituting in

place of the circulation r(z) its expression from (16.18), we obtain

Y=(VI12 I A.SsfnnsinfdO.
a-I 0

Since

' for n=I

•0 for nj&I,

Then the wing lift coefficient

2 12iS
2

Beplacing e by X, we finally obtain

(16.20)

This expreision for Cy shows that the total lift developed by a

finite-span wing is determined by the coefficient of the first term

of the circulation expanslon into a sine series. Substituting in

place of the circulation, its expression (16.18) into the Formula

(163) for determining induced drag and replacing the variables
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z and z by the variable e, after straightforward but somewhat

tedious transformations we obtain the expression for X in the form

X,=oV.P -I.- nA2. (16.21)
a-,

Hence the induced drag coefficient

X,' s n. A2,

T S a-

e ~ a-:_A 11

.2
If we replace - by X and express AI in terms of c using

S 1 y
(16.20), then the expression for the induced drag coefficient takes

the form
c2

c., =w-( 0-+&). (16.22)

where

Expression (16.22) for cxi coincides in form with the Expression

(16.7) for cxi, obtained without account for the variation of the

circulation and downwash along the span. Account for the circulation

and downwash angle distribution along the span makes it possille to

refine the magnitude of the factor 1 + A. The magnitude of the

planform correction coefficient 6 is usually small in comparison with

one, and in the genet'al case depends on the wing geometric character-

istics, angle of atlack a, and cy.
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The expression for the average downwash angle has the form

(16.23)

where the magnitude of the aspect ratio correction factor T depends

on the circulation distribution along the span and equals

(16.241)
a-l

The factors and for wings of different planform

are shown in Table 16.1.

- TABLE 16.1.

Wing planform 1 + T 1 + 6

Elliptic 0.318 0.318

Trapezoidal (n = 2 - 3) 0.318 0.318

Rectangular (X = 5 - 8) 0.375 0.335

Rectangular with
rounded tips 0.365 0.318

§16.8. Optimal Wing Planform

By optimal wing we mean the wing having the smallest induced

drag coefficient for given values of the lift coefficient and wing

aspect ratio. We see from (16.22) that the magnitude of the induced

drag coefficient will be minimal for 6 0, i.e., for

nA2,0

n=2
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This means that all the coefficients of the expansion of r(z) into

a sine series, other than A,, must vanish. In this case

r=21V.AsIne. (16.25)

Hence for 0 = (at the wing root section)

r0=2FV.A,=r...

Then (16.25) takes the form

r=rsino. (16.25')

Converting from the cocrdinate 0 to the coordinate z(z = -C- cos 0),2
we obtain

or

- - . (16.26)

Thus, the optimal wing is a wing for which the circulation

varies elliptically along the span (along the z axis) (Figure 16.14).

For the wiiag with elliptic

circulation distribution, the

induced drag coefficient is 
r

given by the formula I

and the downwash angle is Figure 16.14. Elliptic cir-

culation distribution a~ong
wing span

Consequently, c>, 3nd Aa do not

vary along the spa
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It follows from the coupling equation

rz= e(z)a,(z)b(z) V.

that an elliptic circulation distribution along the span can be

achieved by varying the quantities cy (z), a'a, b(z). To obtain an

elliptic circulation distribution for the same values of cay for all

wing profile sections along the span and for the sane true a,;Zle of

attack a'a (z), it is necessary that the chords vary in Ln elliptic

fashion along the span, i.e., the wing must have an elliptic planform.

The same values of ca for all the profile sections can be ob-

y

tained by using the same profiles along the span, and the same

values of a'- can be obtained by using twist [see (16.16)].

For the wing of elljptic planform it is not mandatory that con-

stant values of a' and c be obtained along the span it is onlya Cy

necessary that their product ca (z) , a' (z) be constant, which is

y a

achieved by a combination of twist and choice of the profiles along

the span.

For the wing of rectangular planform (b = const along the span)

an elliptic circulation distribution can be obtained only by provid-

ing an elliptic variation of the product c (z) a' (z), which is

achieved by a combination of twist and choice of the profiles. On

modern wings elliptic or nearly elliptic circulation distribution is

achieved by simultaneous variation of all three factors:

ca (z), a' a' and b(z).
ya

We note that in those cases in which part of the wing is occu-

pied by the fuselage, engine nacelles, and landing gear nacelles

it is very difficult to obtain the optimal circulation distribution
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along the span. In this case the value of 6 may be quite large. We

also note that for nonelliptic wings, profile selection and twist can

provide an elliptic circulation distribution only at a particular

angle of attack.

§16.9. Conversion of Wing Aerodynamic Characteristics

from One Aspect Ratio to Another

It is known that the wing drag.coefficitnt is

The fact that the profile drag is independent of the aspect ratio

and wing shape makes it possible to convert the known aerodynamic

characteristics for a wing with aspect ratio A to a wing with

aspect ratio X2, which facilitates considerably the use of wind

tunnel test results of a stock model with standard X (usually

equal to 5).

Let us assume that the aerodynamic characteristics are known

for a wing with aspect ratio X V We need to nonvert the aerodynamic

characteristics of the known wing with aspect ratio X1 to a wing

made up of the same profiles but having different planform and

different relative aspect ratio X2.

If the wings operate at the same average true angles of attack

0
(ICTI 2--- 

0
NC2

0  
NCT

,

the coefficients c are the same for the two wings.

Let Aa 1 and Ac2 be the average downwash angles at the wings, then

;c°- --a-20-1 Aa2
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Hence

oror a2=a-,-(Aa, - AQ

*: In accordance with (16.23)

Aa, +V :

Aa2 - (l+r 2 ).

where T and - are the average values of T, determined from

(16.24) for both wings.

Then
I + 1M+i

hence -43 (16.27)

The smaller the aspect ratio, the larger the angles cf attack must

be to obtain the required value of the lift coefficient.

For wings with different aspect ratios but with the same plan-

form, the zero lift angles a are the same. This means that the curves

of the functions cy = f(a) for the d1fferent wings start from t2-e

same point on the abscissa axis but have different slopes - ,he

smaller the aspect ratio, the flatter is the cirve (Figure 16.'5).

The slope of the linear part of the curve, equal to the deriva-
tive dc y/da, can be found as follows. The equations of the linear

parts of the curve for the wing of infinite span (X = -) and for tb.-

wing with finite value of A can be written in the form

Cy=c J 1 N;(1 (6.?

where ca =cy for the wing with finite aspect ratio.
y aa
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Figure 16.15. Conversion of wing aerodyamic char-
acteristics to different aspect ratio

Considering that the magnitude Aa of the downwash angle is

defined by (16.23) and excluding from (16.28) the quantity a - ao,

we obtain

+ 0 +T__ (16.29)1+ --- "(I +f)

Since the partial derlvative c
a is the slope of the linear part of

~the curve c =f(), from (16.29) we can conclude that with reduc-yy

tion' of the wing aspect ratio X the linear part of the relation

Cy = f(a) becomes flatter.

The drag coefficients have the following expressions for the

two wings

FTDCHC 1 _¢C,, + C ga"
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Since the wings are made up of the same profiles, the profile part

of the coefficient cx is the same for both.

Then

or

In accordance with (16.22) the induced drag coefficients equal

N Hence

AC=xCM-Cu2 -- -i I'

or

2 +3, 1+32 (16.30)
.CA2-Cxl- I -1 .32

-* Figure 16.15 shows a typical construction illustrating the use

of (16.27), (16.30) to convert the aerodynamic characteristics from

the aspect ratio X to the aspect ratio X2 (Xl > X2 ) . e note that;

this technique can also be used to obtain the characteristics of

the wing of infinite aspect ratio (profile).

§16.10. Moment of Wing of Arbitrary Planform

The moment of an airplane wing differs from the moment of vt,r

profile, since the wing planform (sweep, aspect ratio, taper ratio,
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etc.) and geometric twist affect the magnitude of its moment. The

wing may be composed of different profiles (aerodynamic twist).

The longitudinal moment M of the aerodynamic forces acting on

z

the wing under actual conditions is defined relative to the Oz axis,

passing through the airplane center of mass. However, in the design

process and in several other cases the position of the mass center

is not known. Therefore the wing longitudinal moment is calculated

about an axis passing thorugh some arbitrary coordinate orJgin, for

example, coinciding with the leading edge of the wing root section.

Let us calculate the longi-

tudinal moment M of a wing Z,

about the Oz1 axis of the body

coordinate system with origin F
located at the leading edge of

the root section (Figure 16.16).

On a wing element of width

dz and chord b, located at the
z

distance z from the voot chord,

there act the longitudinal

momert dM = CmqbdS and aiso the | -1

lift dl, = cylqdS and drag
dX1  c xqdS, applied at the

leading edge of the wing element. Figure 16.1(. Determining

The arm of the lift force about wing long-tudinal moment

tne Oz1 axis is x1 and that of

the drag force is y1.

Considering that,

dS=bdz; c.=c+m,;
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where b, emO, m, cy vary along the span and depend on z, and defining

a climbing moment, tending to raise the wing leading edge, as a

positive and a diving moment, tending to lower the wing leading edge,

as negative, we obtain the expression for finding the total longi-

tudinal moment about the Oz1 axis in the form

* a

TT
fc~qb2dz- ifc,1qxlbdz+

+ 1  qy/1 bdz= q (c72 dz +

+ c,, (m,,b-x,)bdz + S fky, d (16.31)
tI

The wing focus, just like the profile focus, is the point of

application of the wing lift increment when the angle of attack is

changed within the linear part of the relation

; c,=(a).

If we shift the total aerodynamic force to the wing focus

(point F in Figure 16.16), the expression for finding the wing

longitudinal moment takes the form

MhI= M-0-YXpKp1X,9puP. (16.32)

Equating the last two terms in the right sides of (16.31) and

(16.32) and expressing the lift and drag respectively in terms of

cyI and cX1, we obtain the focus coordinates in the adopted coor-

dinate system
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I "  I
-fY-(x 1 +x.)bdz.

XF S jc, 13P
ST (16.33)

Ed -frbytdz.

Here x = -mnb at each wing section.

For a flat wing with constant profile CyI w cyI and c C

then (16.33) take the form

X --= (xi+x,)bdz.

(16.34)

YPU S y1bdCz.

For a wing with straight leading edge xI  0 in (16.33) and (16.34);

for wings with pcsi. 've sw-ep, x1 > 0 and the focus shifts aft. These

formulas do not take into account the mutual influence of the sec-

tions and the influence of tip effects on wing focus location.

Experiment shows that for the wing of infinite span xF  0.25 b,

whLle at the tip sections of the finite-span wing the position of

the focus changes with change of the sweep, taper, and aspect ratio.

in aerodynamic calculations the profile moment characteristics,

as shown in Chapter XII, are evaluated with the aid of the longi-

tudinal moment coeffliient m, obtained from the relation

M, q TSb.
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For the wing of arbitrary planform, the chord is variable along I
the span. Therefore, in order to compare the moment characteristics

of different wings we need a standard approach to the definition

of the magnitude of the chord b for determining the moment coeffi-

cient. For this purpose we use the so-called mean aerodynamic chord

bA, equal to the chord of a plane rectangular wing which is equiva-

lent to the original wing, i.e., having the same area, the same

forces Y1 and Xl, and the same longitudinal moment Mzl.

We snift the aerodynamic forces to the leading edge of the

equivalent wing. Then the moment relative to the axis (Figure 16.17),

passing through the leading edge

of the root section of the equi-

valent wing, is 0 z

xqsx...,Qqs - ,.P
XIA~,.p..

or, considering that

,f1 2=c,,vqSb-- -

-cjjqS (XA-mkflb)± YAl

+clpqSyA (16.35) 0 ZI

Equating term-by-term the Figure 16.17. Mean aerodynamicchord (bA)

right sides of (16.31) 
and

(16.35), we obtain the magnitude

of the mean aerodynamic chord bA and the coordinates of its leading

edge in the adopted coordinate system
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I

bAA! f e'- I,2

T

. .AM.,bA=._ m (x, nxp)bdz=xF.; (6.6
-Tx4mKbSj (16.36)

~1

-TYAT j~.Abyjdz~y.p

It follows from the last two relations that the focuses of the

given wing and its equivalent wing coincide.

In the first approximation we can assume that

CAR&* CkrIp CAup

Then (16.36) takes the form

I1

T

-- A2d'z;
S

xA-mPbA = X, p=-- .+ x,)dz; (16.37)
0

YA = YP - bY, dz.
S

Anaysis of (!".37) from the geometric viewpoint makes it

possib' . ', obta'., a cquite simplE te.:'hnlque for determinin- tne

magnituJ- .nd ciz t- .tes of the liL an aerodynamic chor ,' (Figure
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16.18). For example, laying off

on the lower extension of the

root chord the magnitude of the Ak

tip chord and on the upper ex- &A

tension of the tip chord, the

root chord, we connect the ends

of the resulting segments and

find the point of intersection

of this line with the line Figure 16.18. Geometric

connecting the midpoints of the technique for finding MAC

root and tip chords. The chord

drawn through the resulting point of intersection is then the MAC.

REVIEW QUESTIONS

1. Explain the nature of induced drag. How does wing aspect

ratio affect the magnitude of the induced drag?

2. Explain how the induced drag depends on angle of attack.

3. For what circulation distribution along the span is minimal

induced drag obtained? What planform must the flat wing have in

this case?

4. What methods do you know for the approximate solution of

the integrodifferential equation of the finite-span wing?

PROBLEMS

1. Plot the wing polar in the range 0 < c < 1. The wing

aspect ratio X = 10, profile drag coefficient cxp = 0.008, and

the coefficient 6 = 0.03.
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2. For the conditions of the preceding problem, find graphi-

cally and analytically the maximal wing aerodynamic efficiency,

optimal angle of attack, and the relation between the profile and

induced drags in the case in which c y/3a = 5.0 and the zero lift

angle a0 = 00.

Answer: Kmax = 30.9; opt = 5.660; Cxp = Cxi*

3. An airplane polar for small angles of attack is given by

the equation c = 0.022 + 0.078 c 2 . Find the lift coefficient,

drag coefficient corresponding to the optimal angle of attack, and

also the maximal efficiency of the airplane.

Solution. At the optimal angle of attack the efficiency

K is maximal and the reciprocal efficiency 1= - is minimal.

The minimum of the quantity 1/K is found from the condition

da dcg do

Since - -tO, thenda

dod~i de

Using the problem conditions, we have

o.022 -i-0,078c
0,156--

C1 x

Hence

CVN.=-,--=0,531;
0.178

,.,,---0,022-j 0,078.0,282= 0,044-
K,,," 01' ., = O. S = 12,07.

O. it 0.044
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Footnote (1) on page 124: This integral is improper; however its

principal value can be obtained from the

relation

4r~z,) 4 T dra z 1S -6 (Z) - ! ll dz r d z I
.~~ ,I' - i q.

dz1  + Z1

This operation is justified physically

by the fact that we neglect the effect

of the vortex element on itself.
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CHAPTER XVII

SWEPT WINGS IN SUBSONIC FLOW

§17.1. Concept of Wing Sweep and Its Effect

Experimental data and also actual flight data have shown the

advantage of swept wings in overcoming the shock stall problem and

reducing wave drag.

A swept wing is one in which the line of focuses, located

approximately one quarter of the chord from the leading edge, forms

with the normal to the wing plane of symmetry the angle X, termed the

sweep angle (Figure 17.1).

Somretimes ir calculations the sweep angle is measured, not from

the line of focuses, but rather from some other line, for example,

from the leading or trailing edge of the wing, and so on. For

definiteness of sweep angle notation a subscript is attached to the

letter x to show the line relative to which this angle is measured.

For example, X0 is the leading edge sweep; X. refers to the line of

maximal thickness, X1/4 is for the line of focuses, x112 is f-' ,.he

Z midpoint of the chord, X1 is for the trailing edge, and so on (see

Figure 17.1).
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v As a rule wing sweep is positivex (see Figure 17.1a),and less frequently

negative (see Figure 17.1b). In the

*case of negative sweep the wing tips
are displaced forward in the direc-

a 114 chord line tion of flight (in this case the

Vangle x is negative). If the w .ng

edges have breaks or are curved, the

sweep angle changes at various seg-

b) 'ments along the wing span.

One of the characteristic

Figure 17.1 Swept wing: a - features of swept wing operation in
positive sweep; b - negative an air stream is the utilization of
sweep.

the sideslip effect. Assume the

air flow approaches a rectangular wing of infinite span with the

velocity VI, perpendicular to the wing leading edge (Figure 17.2a).

In this case, as the air flows past the wing we obtain a definite

pressure distribution along the chord, which has an effect on the wing

aerodynamic coefficients.

VVV.

V

a) b) C) d)

Figure 17.2. Illustrating sideslip effect.

Now let us assume that the given wing is subjected to flow in

the direction along the span by another stream with the velocity V,

(Figure 17.2b). This velocity V2 has no effect on the pressure dis-

tribution over the wing surface or on its other characteristics (it is

true that in the viscous flow case friction develops in the boundary

layer, which we shall ignore here).
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Under simultaneous action of both flows the velocity vectors

and 2 on the wing ccmbine. The resultant velocity is

It is obvious that the resultant velocity V is directed at the

angle 0 to the wing plane of symmetry (Figure 17.1c), termed the

sideslin angle. The picture is the same if the resultant velocity is

parallel to the original velocity V1 and the subject wing is rotated

through the angle B (Figure 17.2d). In this case we obtain the flow

pattern about a yawed wing with the sideslip angle 8. Thus, flow past

a yawed wing is equivalent to oblique flow over a rectangular wing.

The normal and tangential velocity components are, respectively

V1=VcosP. V 2=VsanP

We note that in the yawed case the flow about the wing profile in

the section normal to the wing generator is defined not by 'he velocity

V, but rather by its component Vl, which is less than the velocity V

by the factor cos 3. If we now maintain the same angle of attack for

the profile as we had for the straight wing, the pressure distribution

along the profile of the yawed wing becomes, for the flight velocity V,
the same as it would be for a straight wing at a velocity V1 , equal to

V cos 8.

Since for the same flow velocity past the straight and yawed

wings the local velozities at the surface of the yawed wing are less,

the shock stall on the yawed wing will occur at higher flight speeds.

For small yaw angles the magnitude of the critical Mach number for

the yawed wing of infinite span can be determined in the first

approximation from the relation

MPCK= P see MM~n = M Cos P (17.1!'

The operation c:" swept wings has a complex nature and the sideslip

effect is not fu]])- utAlized. On a swept wing of sufficient]y large

aspect ratio we can -. i,.Larily define the regions I, IT. and IIl

(Figure 17.3.

T-HC-. -72C-71 ]



In the central part of the

wing (I) Z-,ear the plane of symmetry)

the local yaw angle 0 diminishes and

becomes equal to zero over some

region as a result of mutual influ-

ence or the wing sections. This

phernomenon, termed the centerline

effect, reduces the yaw effect some-

I * what and influences the aerodynamic

r iff E characteristics of the swept wing.

The yaw effect is also significantly
Figure 17.3. Schematic of flow decreased at the tip part of the
around swept wing. dcesda h i ato hwing (:II), where there is consider-

able deviation of the streamlines on the surface of the wing.

In region II, with more uniform flow along the span, the stream-

lines are deflected only slightly from the xOy plane and the magnitude

of the yaw angle 0 is close to the sweep angle X. The existence of

a region with flow which is uniform over a large part of the span

makes it possible in studying the swept wing to represent this region

as a corresponding part of an infinitely long cylindrical wing placed

in the flow at the sweep angle, i.e., a yawed wing.

§17.2. Physical Picture of Flow Past Swept Wing

In order to clarify the physical essence of the flow over a swept

wing, we shall analyze the behavior of the streamlines on its surface.

Figure 17.4 shows a schematic of part of a swept wing. We assume that

the freestream velocity 1. approaching the wing is parallel to the wing

axis of symmetry. We resolve this velocity into two components: Vn

normal to the wing leading edge and Vt tangent to the leading edge,

i.e.,

The tangential component of the velocity on the swept wing has

practically the same magnitude Vt = V. sin X at neighboring sections,

while the normal component Vn varies as a function of the section

profile shape (and angle of attack). Therefore the streamline curvatu".
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A depends basically on the magnitude

, V, of the normal velocity component.

At point A (Figure 17.4) we have

" , $in undisturbed flow with the velocity

V,. As we approach the leading edge

'~,~~fl ~of the wing, the flow velocity de-v..Sin , creases and right at the leding

edge Vn = 0. Further along the

chords normal t) the wing generator
ln the velocity increases, reaching a

maximal value at the point C of min-

imal pressure. Behind point C the

An velocity again decreases, passing

through a second minimum at the

trailing edge, and then again increases

to the magnitude of the undisturbed

flow velocity at point E. The direc-
*Figure 17.4. Variation of tion of the streamline near the

velocity and streamline
direction near surface of wing (line A'B'C'D'E' in Figure 17.14)

yawed wing. changes in accordance with the changes

of the resultant velocity vector

, (the velocity V equals the sum of the constant tangential velocity

and the variable normal velocity).

This unique variation of the velocities in magnitude and direction

leads to significant differences between the pressure distribution

pattern on the surface of the swept wing and that on the straight wing,

for which the pressure distribution pattern is nearly the same at all

sections. The pressure distribution along the upper surface of

different longitudinal sections (in the streamwise direction) of q

swept wing, confirming the existence of the centerline and tip 'ffccts,

is shown in Figure 17..
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§17.3. Connection Between1, Parameters of Swept and
Straight Wings

0 XFigure 17.6 shows a wing of

infinite span placed at the sweep

angle X to the stream - a yawed
wing. The chord b in the section
normal to the wing generator can be

Figure 17.5. Pressure distri-
bution at different sections expressed in terms of the chord b of

of swept wing (in streamwise a streamwise section
direction): 1 - root sec-
tion; 2 - tip section; 3 - b=bcos
intermediate section.

We denote the angle of attack in the normal section by a thena~n'

bs bC0 oX Cos X

IV N

, Figure 17.6. Yawed wing of infinite span.

~Since the angles of attack usually have a small magnitude, this

~formula for moderate sweep can be rewritten as

lol

= -i- (17.2)
F3l
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The relative thickness of the normal section is

~ 1~CosT (17.3)

The relative curvatures of the normal and streamwise sections

have the same relationship

Cos.

Thus, we can conclude that the normal flow passes around a

cylindrical, irfinitely long wing with somewhat thicker and more

highly cambe.ed profile than the yawed wing at the angle c, attack a

Let us examine the yawed wing and some straight wing (Figure 17.7)

which is equivalent in form to the yawed wing (both wings have the

same chord, profile sections, and streamwise angles of attack). The

transverse stream, approaching the

yawed wing with the velocity

V= V cos x, creates the lift

QVco27 (17.is)

where S is the area of a wing seg-

ment of length 1 along the span

(see Figure 17.7).

I ~I-
On the basis of (17.4) the lift

... .coefficient of the yawed wing is

Figure .7.7. Swept wing and cp cos2y (17.5)
equivalent straight wing to i(

We know from wing profile theory

that at small angles of attack the lift coefficients for a symnetric

profile are connected by the re'atton
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IIOn this basis and with account for (17.2) we can write

Substituting the value of c into (17.5), we obtainyn

C,@=cVcosY (17.6)

Thus we conclude that the lift coefficient of the yawed wing is

less than that of the equivalent straight wing.

Differentiating (17.6), we obtain the expression for c of the

yawed wing

c4I=V cosx (17.7)

We can obtain the corresponding derivative for the finite-span

swept wing by substituting into (16.29) in place of ca the quantity
C ! y

cos X in accordance with (17.7). After several transformations
y

we obtain -.

VF f2 (17.8)
uctp £

where T accounts for aspect ratio, taper, sweep, and the circulation

distribution along the wing span. On the average Tsw equals 0.2; with

increase of X and decrease of n,the quantity Tsw increases somewhat

(to about 0.3).

Typical curves of c = f(a) for a finite-span, straight-wingY

profile, for the profile of a swept wing of the same aspect ratio,

and for a wing of infinite span are shown in Figure 17.8. Comparison

of the curves shows that c" is less for the swept wing than for the
y

straight line.

For the swept wing the average downwash angle can be represented

by an expression analogous to (16.23) for the straight wing
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x--- a~----t--,(l, + ,) (17.9)CY XAk-

The induced drag coefficient of

/A.) the swept wing is determined similarly

to that of the straight wing from the

formula

(17.10)

Figure 17.2. Relation c f(a) For the swept wing the pressure

f drag coefficient component is lessfor wing of infinite sp)an

(profile) and also for straight than for the equivalent straight
and swept wings of finite spanhaving different aspect ratio. wing, while the friction drag co-

efficient component is larger. If

w.e also consider the change of the induced drag coefficient, we find

that in the first approximation we can write

CS tip CA , ( 17. ii)

The pitching moment of the swept wing resulting from the

aerodynamic forces, like the lift force, is proportional to cos X,
since both the lift and the pitching moment are created basically by

the pressure forces. Therefore we can write the following formula

for he moment coefficient of an element of a swept wing relative to

the leading edge

M €Cp- 'm up COS X

Substituting herein the value of cm str from (12.16), we obtain

CM C1,=cY Cos X+mcM cos X=co cos X+ me,, tip (17.12)

or, introducing the notation era cos X = C10 sw, we have

CCmTc!,-MOCip+mcYCr, (17.13)
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To find the moment coefficient of the entire wing we must take

into account the longitudinal displacement of the individual elements.

We note that many studies are now available which yield an exact

solution of the swept wing problem. These studies are based on one

method or another for accounting for the induced velocities generated

by the bound vortices of the two halves of the wing. In particular,

techniques have been develoded to calculate the circulation distri-

bution along the span of the swept wing. One of these methods involves

first finding the circulation distribution along the span of the

equivalent straight wing, in which the circulation is represented in

the form of the sum of trigonometric terms, and then a sweep correction

is introduced into the coefficients of the terms of this sum.

§17. !'. Small Aspect Ratio Wings

Wings with comparatively large aspect ratios were used in air-

plane design up to the 1950's. Even the tail surfaces had aspect

ratios X exceeding 4. Large aspect ratio wings were used to reduce

the induced drag. The maximal magnitude of wing aspect ratio was

limited primarily by requirements of wing strength and stiffness.

After the 1950's airplane speeds began to increase particularly

rapidly, and rocketry developed tremendcusly. At these high speeds

quite small values of c y were required and the role of the flight

vehicle induced drag, which depends on Cy, in the overall drag balance

became very small. Wings of very small aspect ratio (N = 0.5-3), which

are more favorable at the high speeds, began to be used more and more.

Particularly small aspect ratio wings were used on the cruise-type

missi]es. Attempts to apply to these wings the highly developed

classical theory of the large aspect ratio wing were unsuccessful:

in manj cases the theory diu not yield even qualitative agreemient with
, e gierlment.

In fact, the basic assumptions of large aspect ratio wing theory

are not applicable to the small aspect ratio wing: the hypothsis of
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__ "plane sections, replacement of the

wings by a vertical lifting line,

QA -neglect of the downwash angle vari-
48 /ation along the wing chord. Of

considerable importance for the small

aspect ratio wing is the transverse42 44 46 cc tad
:low over the wing, which leads to

Figure 17.9. Curves cy = f(r ) marked three dimensionality of the
for wings of large and small flow and the appearance of a very

aspect ratio. complex pressure field on the wing

surface. The wing planform has a

particularly great influence on the aerodynamic characteristics of

the small aspect ratio wing.

Experiment is of great importance in studying small aspect ratio

wings. Many semi-theoretical (semi-emperical) methods for analysis

of small aspect ratio wings have also been proposed. The primary

difference beteen these methods lies in the vortex models vhich are

used to replace the wing and the flow in the region of the wing. As

a rule, these methods make it possible to calculate the forces acting

on the wing for very small angles of attack.

The primary features of the aerodynamic characteristics of the

small aspect ratio wings are the following.

1. For small aspect ratio wings, the curve c = f(a) does not

have the rectilinear segment characteristic of the large aspect ratio

wings (Figure 17.9). The curve cy = f(a) for x < 2 has an S-shape.

This formi of the curve cy f(a) is explained as follows. For smallY

a, as a result of the intense crossflow of air around the tips of

small aspect ratio wings,the pressure on the upper and lower surfaces

of the wing equalizes, and this leads to reduction of cy. Witp Increase

of a, powerful vortices 'oegin to separate from the tips and these lead

to reduction of the oressure on the upper surface and therefore to

increase of c .
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2. Fo.- small aspect ratio wings ast is considerably larger than

for large aspect ratio wings. Here the value of ast for wings with

aspect ratio A < 2 retains about the same value, close to 0.6 rad.

The increase of ast for the low aspect ratio wings is explained by the

equalization of the pressure along the wing chord above its upper sur-

face, which is a result of the intense crossflow around the wing tips.

3. The induced drag of the low aspect ratio wings depends to a

marked degree on the wing planform and is larger in magnitude than for

the large aspect ratio wings (for the same values of c y). The coeffici-

ent cxi for the low aspect ratio wing can be represented by a relation

analogous to (16.22) for the large aspect ratio wing

where the parameter 6 depends on the wing planform and angle of

attack and is determined experimentally.

Experiment shows that for the low aspect ratio swept wings for

values of c < 0.6, 6 = 0.05 - 0.15, i.e., it has the same values asy
for large aspect ratio wings. For triangular (delta) wings the param-

eter 6 is considerably larger (0.4 - 1.0).

When the design of small aspect ratio wings is necessary, reliable

experimental data should be used, with particular attention being

devoted to the similarity of the test and full-scale vehicles.

REVIEW QUESTIONS

1. What is the effect of sweep?

2. Explain the phys:Qal nature of the flow past a swept wing.

3. Write the formulas connecting the parameters of swept and

straight wings.
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4. How does wing sweep affect the magnitude of the lift

coefficient c and c ?
y y max

5. What are the peculiarities of the aerodynamic characteristics

of the small aspect ratio wings?

PROBLEM

1. Find the angle of attack of a flat wing with constant profile

along the span with aspect ratio A = 8 and sweep angle x 0.6 rad if
the lift coefficieit cy = 0.6, zero lift angle m0 = -0.06 rad. More-

yy
over, we know that t = 0.12 and C~yA = = 5.2.

Solution. From (17.8) we find

'all.....=3.62

-,'1 (I + tg-)

From (12.16) we have

=--0-- 0 106 tad =604'
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" _,



CHAPTER XVIII

MAXIMAL LIFT COEFFICIENT. WING MECHANIZATION

§18.1. Flow Separation from Wing Surface

When a wing operates at high angles of attack, the flow over its

upper surface separates. Flow separation occurs at comparatively

small angles of attack, on the order of 10 - 120, and initially has a

local nature. As the angle of attack is increased, the separation

zone gradually expands more and more, extending forward along the chord

and laterally along the wing span. Separated flows on the upper sur-
face of the wing are the result of boundary layer separation, which

takes place at large pressure gradients.

The separated flow regime over the wing has considerable influ-

ence on the wing aerodynamic characteristics, particularly the lift

coefficient. This influence results from the fact that reduction of

the rarefaction in the separation zone disrupts the linear dependence

of the lift coefficient on the angle of attack (segment AB in Figure

18.1). The lift coefficient corresponding to point A is sometimes

termed cy buffet, since airplane flight is usually accompanied by

buffeting when the separated zone appears on the wing.
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At some critical angle of attack acr flow separation extends to

most of the wing surface, and the lift force decreases beginning at

this angle of attack. The values of ey max and ast depend to a con-
siderable degree on the geometric characteristics of the wing and on

the Reynolds number Re. The region of separation onset and further

growth of the separation zone depend on the wing planform. Let us

examine the influence of the wing geometric characteristics on the

development of the separation phenomena.

Influence of Wine Planform

For each section of a geometrically plane wing of infinite span
with constant profile, the lift coefficient is limited to the value

cy max sec" The value Cy max sec (see Chapter XII) for a given profile

depends on Re Vb s/. If we determine cy max see f(i) for a

given wing, we can plot a curve which is the upper limit of the varia-

tion of cy sec" At any point along the wing span, the value of cy sec
cannot exceed the value defined by this curve. In Figures 18.2 and

and 18.3 this straight line 1 is plotted for straight and trapezoidal

wings.

CY / B Now let us plot the cy sec
,/ / distribution along the span,

corresponding to some angle of

attack. In accordance with the

coupling Equation (16.14) we have

I.
2r 'z

-I, - ,,,,=v D (1 8.1)

where r(a) is the value of the
Figure 18.1. Lift coefficient of circtlation around a contour

asymmetric profile versus enclosing the given wing sec' on
~angle of attack

aat the given angle of attack.
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Figure 18.2. Change of spanwise Figure 18.3. Change of spanwise
c ysedistribution for rectang- c ysedistribution for trape-

y sec se

ular planform wing with increase zoidal wing with increase of a

In the central part of a rectangular planform wing the circu-

lation is nearly constant, while it drops off markedly toward the

tips. Since the chord is constant in the present case, the nature of

the cy variation along the span is the same as the r variation, I.e.,

for a straight wing the coefficient c y see is practically constant

(see Figure 18.2) over a large portion of the span in the central

region.

On the trapezoidal wing the circulation decreases toward the

tips along the entire wing semispan - for the trapezoidal wing the

free vortices trail more uniformly from the trailing edge of the wing.

In this connection we would expect a more uniform decrease of c seey e
along the span of the trapezoidal wing in comparison with the rec-

tangular wing. However, in accordance with the coupling Equation

(18.1), because of the chord reduction as we move away from the root

section, there is initially some increase of cy sec and Then cy sec

decreases at the tip sections, where the circulation decreases

markedly (see Figure 18.3).
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This variation of c sec along the span of a trapezoidal wingyse
can be explained in another way if we consider the nature of the effec-

tive section angle of attack variation along the span. In fact, if

we examine some arbitrary wing section, the value of c will be
y sec

determined by the effective local angle of attack, which depends on

the wing angle of attack (we are considering a plane wing) and the

downwash angle.

On the straight wing the free vortices are concentrated primarily

at the tips (Figure 18.14) and the dowmwash angle increases smoothly

along the span. Consequently, the effective angle of attack gradually

decreases as we approach the wing tips, vanishing at the tips. On

the trapezoidal wing the free vortices are distributed along the span

approximately as shown in Figure 18.4.

Ir

IZ
VYI 

T

Figure 18.4. Change of circulation and
v-locities induced by free vortices along
sr;i for straight (1) and trapezoidal (2) 
w Dng-



This figure also shows the spanwise variation of the velocity

V induced by the free vortices. We see from the figure that the
y
induced velocities will have a minimal value at some section z', since

here the velocity is induced simultaneously by both vortices located

to the right of the section (vortices b) and vortices located to the

left of the section (vortices a). It is obvious that the effective

angle of attack and c reach their maximal values for the plane wing
y

at the section z'.

With increase of the angle of attack, the circulation and cy see J
increase at each section. In this case, there will be a linear

increase of c y see at all sections if the flow does not separate at

any of the sections.

Upon reaching some angle of attack, separation of the boundary

layer begins at that wing section where the ordinates of the curve

c are closest to the ordinates of the curve c (section_y sec y max secf
z' in Figure 18.3). On the wing of rectangular planform, flow separa-

tion begins in the wing root region and rapidly extends to a large

portion of the span. On the trapezoidal wing separation begins near

the tips because of the rapid decrease of c ytax sec toward the tips

(because of the small values of Re), and also as a result of the

nature of the c variation described above. At those sections
y sec

where separation occurs, the values of c will not increase iny sec
proportion to a as the angle of attack is increased further, as a

result of which the c distribution pattern is deformed.~y sec

Distributions of c y sec for the angle of attack correspond-

ing to separated flow on the upper part of the wing, are shown in

Figures 18.2 and 18.3. The dashed curves show the distributions

which would occur with separation-free flow, while the continuous

curves are with account for separation. For the angle of attack 3

separation takes place on tine segment AA (see Figure 18.3). On the

segment AB the values of cy have not yet reached the values cy max sec'

while the segment BB is a region of deve? jed flow separation, cerr_-

sponding to supercritical local angles of attack.
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The variation of the c distribution along the span of the~y sec
trapezoidal swept wing with increase of the angle of attack is shown

in Figure 18.5. Characteristic for the swept wing is the marked

decrease of c y sec in the root region, which is explained by decrease

of the effective angles of attack at these sections because of the

local increase of the downwash. We see from Figure 18.5 that for the

swept plane wing with constant profile the lift coefficient is distri-

buted very nonuniformly along the span, reaching its maximal values

at sections located near the wingtips. Just as in the case of the

straight trapezoidal wing, this leads to the appearance of separation

phenomena at these sections.

Moreover, characteristic for the swept wing is piling up and

increase of the boundary layer thickness near the tips as a result of

the flow velocity component along the span (Figure 18.6), which leads

to premature flow separation at the wingtips. To prevent premature

flow separation, use is made of so-called fences - plates on theIupper wing surface which prevent flow of the boundary layer toward
the tips (possible locations for such fences are shown dashed in

Figure 18.6).

Figure 18.5. Change of spanwise Figure 18.6. Regions of , Pra-
c c distribution for swept ture flow separation on swept

wing wit-. increa, of a wing owing to boundary layer
pileup

it
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Thus we can draw the following conclusions. The wing planform

has a very significant influence on the location where separation

phenomena begin on the wing. For the wing of rectangular planform,

separation phenomena begin in the center region and extend rapidly to

the entire Span. On the trapezoidal and swept wings, flow separation

begins near the tips. The use of aerodynamic fences makes it possible

to avoid this early flow separation on the swept wing; in this case,

the swept wing behaves approximately the same as a straight wing.

We note that the wing planforn., which determines the location

where flow separation begins along the wing span, has a major influ-

ence on airplane behavior in a spin.

Effect of Profile Section Shape and Wing Twist

For a wing of given planform, assembled from profiles which

differ along the span, cy max sec depends not ciy in Re but also on

the profile form: for the same values of Rc t1.L coefficient c y max

depends on the relative thickness, camber, and max r.olc thickness

position along the chord.

On the other hand, use of different profiles l'nd- to redistri-

bution of the circulation along the span and therefore to change of

the curves cy sec = f(z). By assembling the wi-ag fr 'rent pro-

files, we can alter the nature of the c y max sec and c arves

and thereby control the location of the zone where fLo. ?ation

starts on the wing.

For example, by using profiles providing more lift, i.e., profiles

with a large value of cy max' in the region of expected separation

initiation we can obtain practically simultaneous onset of the

separation phenomena over the entire wing span.

To ensure transverse flight stability at high angles of attack,

it is usually requi-ed that the separation phercmena begin at the

root sections. In this connection profiles with higher cy max are
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used at the wing tip sections and profiles with lower lifting proper-

ties are used at the root section - even profiles with negative

camber.

The lifting properties of a wing can be improved by using geo-

metric twist, for which the profile sections are rotated without

altering their form, so that the local angles of attack are less in

the regions of expected flow separation than on the remaining portions

of the wing. If the tip part of a trapezoidal or swept wing is given a

negative twist, the separation zone can be shifted toward the root

section.

Simultaneous use of twist and different profiles along the wing

span makes it possible to obtain the required wing lifting qualities

at high angles of attack.

Effect of Wing Aspect Ratio

In the case of high wing aspect ratios, flow separation occurs at

angles of attack close to ast for the given profile. For wings of

low aspect ratio (X < 3) flow separation usually occurs at consider-

ably higher angles of attack. The delay of flow separation on wings

with low aspect ratio is explained by the lesser pressure reduction

on the upper surface as a result of air cross-flow around the wing

4tips, and also as a result of the influence on the boundary layer of

the powerful tip vortices trailing from the wing.

§18.2. Calculation of Ma:ximal Lift Coefficient

The maximal lift coefficient is one of the most important aero-

dynamic cnaracteristics of the wing. The maximal value of ay deter-

mines the minimal airplane level flight speed. The lower the level

flight speed, the lower is value of the landing speed which can be

achieved. The magnitude of the landing speed must be as low as

possible, since -t defines .he required runway length and 3'Ifety in

the most critical pLase of airplane flight - the landing.
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We note that exact determination of the value of wing cy x

involves several difficulties. It is difficult to perform a model

experiment for finding c max in the wind tunnel, since it is not

always possible to obtain the required Reynolds numbers. A factor

which alleviates the situation somewhat is the fact that, since the

value of c y max must be known to calculate the airplane takeoff and

landing characteristics, the velocity and therefore t.he Reynolds

number will have comparatively low values. However, for the modern

large commercial airplanes difficulties of a technical nature arise

in obtaining the required values of Re for their models in wind

tunnels.

It is also difficult to obtain an adequately exact determination

eof Cy max by calculation, since spanwise variation of the profiles,

the use of twist and complex planforms (variable taper along the span,
variable sweep, and so on) are characteristic for the wings of modern

airplanes. The complex wing shape in plan and cross section makes it

difficult to calculate the distribution of cy sec along the span, and

this is what leads to the primary difficulty in determining wing cy max

Z The method developed at TsAGI *for calculating wing c y max is

suitable for straight and trapezoidal wings of comparatively large

aspect ratio, composed of identical profiles without geometric twist

or sweep. This method is based on the assumption that the wing stal-

ling angle of attack is reached at the instant the value of Cy sec

reaches the value c y max sec at any one section as the angle of

attack is increased. In this approach it is assumed that a linear

dependence of c on the local angle of attack is maintained at~y sec

all sections right up to this instant, and in this connection the

curves representing the spanwise C y sec distribution are not deformed

at the location where flow separation starts. In Figure 18.7 the

dashed curve shows the actual c see distrfbution, while the contin-
yse

uous curve shows the distribution obtained by the method just

described.

Translator's Note: This designates the Central Institate cf
aerohydrodynamics Jmenil N. Ye. Zh'kovskiy.
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S.4--44---AS-1, 1,0

Figure 18.7. Illustration for Figure 18.8. Curve of c max sec/

calculation of wing cy max: /c s = f(m)

1 - variation of c see used in y sec

calculation under assumption that
Cy sec Cy max sec at the section

i'; 2 - actual variation of cy sec

at the angle of attack for which
c ysec = cy max se at section '

If we assume that the wing cy max corresponds to the case shown

in Figure 18.7, we can show that the following formula holds

whe'e c' is the value of c 'for the angle of attack corre-y sec ysee
sponding to the value c = 1.y ~ ~ se se

To calculate c' e f(£) we must know, the circulation distri-
y sec

bution along the wing span. In this case, cy max st is determined

graphically (Figure 18.8).

Data on the circulation distribution along the span for wv.,gs

of different p.anform are presented in the reference literature.

FTD- k,- 23-720-71 170



For an approximate estimate of the value of cy max for wings of

large aspect ratio (X > 3) we can use the approximate empirical

formula

I + CCS It
aa; Cg35tcmq kj 2

where cy max sec is the maximal lift coefficient of the wing profile

with chord equal to the average wing chord at a Reynolds nuiuber

corresponding to the landing speed;

Xc - is the wing sweep angle along the maximal thickness line;

kn - is a coefficient depending on the wing taper ratio n;

, i .iU I
10.90 3 0,93

2 0.94 4 0,92

For triangular wings of small aspect ratios, cy ax st is

determined approximately as a function of the wing aspect ratio:

a I2 4

cg Mal NP 1,28 1.2 10

§18.3. Wing Mechanization

In modern aviation swept wings of comparatively small area with

profiles of very low camber and relative thickness are used in order

to increase the flight speed. Such wings cannot provide high lift

forces under landing conditions because of early flow separation.

The problem of increasing the lifting qualities of the modern wings

at high angles of attack is a very urgent question at the present

time in order to reduce takeoff and landing distances. For this p ir-

pose The wings are equipped with special structural elements whi zh
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make it possible to increase the magnitude of the wing lift coeffi-

cient in the critical angle of attack region. These elements operate

only in the takeoff and landing regimes and are termed wing mechani-

zation. Wing mechanization includes split flaps, trailing-edge flaps,

slats, leading-edge flaps, spoilers, and so on.

The split flap is a portion of the wing lower surface near the

trailing edge which deflects through the angle 6. f* The deflection

may take place either about a fixed hinge (simple split flap, Figure

18.9a) or about a sliding hinge (extending split flap, Figure 18.9b).

The flap chord amcunts to 15 to 30% of the wing chord. The maximal

deflectiorn angle 6, may reach w/3. Split flaps are located in the

central part of the wing and occupy from 40 to 60% of the entire wing

span.

b)

Figdre 18.9. Split flaps:
a - simple; b - extending

We see from Figure 18.10 that deflection of the flaps of a

straght wing of large aspect ratio causes considerable increase of

the lift coefficient, since flap deflection leads to ncrease of the

pressure on the lower surface of the wing, while a low-pressure zone

is formed between the flap and the wing. This low pressure leads to

decrease cf the pressure and increase of the velocity over the upper

surface of the wing. With increase of' the angle 6f, the curves

c = f(a) shift to the left. As a result of the aspirating action ofY
the flap there is a marked increase of cy max (its value may d ,i.e

in certain .ases). ':e effect increases when a sliding flap is usec

since Jn t/ c.' -.,ere is also arn increase of the wing ar~a.
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Flap effecti; - Ia -

uated by the magnitude f the

lift coefficient increase. We note
that the flap deflection angle 6

relative flap chord bf./b, relative

flap length 1f/i, and finally the
wing planform affect the magnitude

of Ac and Cymax The effect of

the quantity bf/b on the coeffi-

-02 0 0,Z rad cient Ac is shown in Figurey wax
18.11. Flaps which cover the

Figure 18.10. Win- lift coeffi- entire span will obviously have
cient c y versus angle of attack the largest values of Ac -

a for split flap deflections
6f = 0 and 6f = IT/3 rad We note specifically that

flaps increase the drag coeffi-

cient as we l as the lift coeffi-

cient. The aerodynamic efficiency K = cy/C x of wings with deflecting

flaps is less than for wings wichout flaps. The drag coefficient

increase plays a favorable role during the airplane landing proc dure.

However, during takeoff it is necessary that the drag zioeffi.cien; be

as low as possible, while increasing the lift coefficient. tseulrefre,

the flaps are deflected only partially. uqually 0.4I - 0.5 r?.o~uring
takeoff.

When A- is increased, there is also an increaso :i' :he w-;

pitching moment coefficient. Curves showing tne dependence o"

on the flap deflection angle in the simple split flap and slic'itr

split flap (bf/ -- 0.3; If/I = 1) cases are shown in Figure f1.12.

Trailinr-edge flaps are a deflecting aft portion of the wing.

When trailing-edge flaps are deflected, a profiled slol "F'5:'c e 1S '

is usual]y formed between tL,- wing aA tl:e lpadinr ed-e of thW fap,

through which air flows at high velocity over the up:.rr c,-f;Vt f
the trai:ing-edge flap. This stabilizes the separatin-f-" . "-rw.
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NI IIIa-

1A

0 0,1 ~ 0 -

6 -0.31 -42 -4#9 Cas

ax.versus Figure 18.12. Effect of split
max flap deflection angle on wing

relativ -  flap chord: moment characteristics:
1 - extending split flap; 1 - simple split flap;
2 - simple split flap 2 - extending split flap

the boundary layer and makes it possible to deflect the flaps through

large angles while retaining their effectiveness.

Trailing-edge flap deflection leads to about the same effects as

does deflection of split flaps; however the drag coefficient will be

smaller in the trailing-edge flap case, The trailing-edge flap chord

does not usually exceed 20 - 25% of the wing chord, since trailing-

edge flap effectiveness increases only slightly with further increase

of b f/b.

The quantity mc increases with increase of the flap deflec-Smax
tion angle. The maximal trailing-edge flap effectJeness Is obtained

with 6 = 0.7 - 0.8 rad, i.e., with somewhat less deflection than for

the split flap. In addition to increasing Acy max and the drag

coefficient, trailing-edge flaps als.., increase the diving mcment coef-

ficient cm . The varlation of cy with c for a straight wing with

different trailing-edge flap deflection angles for Zf/Z = 1 is shown

in Figure i8.14. We note that deflection of both the split and

trailing-edec' lalj6 -.,6 very little effect on the location of the

wing aerodnainic c'-i,
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Ib)

Figure 18.13. Trailing edge flaps:

a - simple; b - extending

4 Usually the trailing-edge
ii 1,&t X tflaps, like split flap5s, occupy

/ _,about 60% of the span, since part

1,2 of the wing is used for the ail-

-0 "3= 4 .,C6rad erons. Therefore, the effect of
both the split and trailing-edge

0,, =Ozrad flaps is reduced correspondingly.

0, Sometimes the ailerons are also

aA I I used as trailing-edge flaps in

0 -0,2 - 6 order to increase the effectiveness,

both ailerons being delected

down during the landing processFigure 18.14. c versus c for
y m for this purpose.

wing with different trailing-
edge flap deflections

(f/ = l) For a comparison of the

effectiveness of the use of solli

flaps and various types of

trailing-edge flaps covering the entire span, Table 18.1 shot-is th.

aerodynamic characteristics of a straight wing (X = 5). Th- oxtenuiiq

trailing-edge flaps are most effective.

Leading-edge flaps and slats. The lealaing-edge flap with sha:''

leading edge has found use on supersonic airplanes as a form of ,in:

mechanization (Figure 18.15). When deflected at high angles .f tta.:k,

the leading-edge flap prevents premature fl)w separation fro, ti-. hd,

leading edge of the supersonic profile and thereby increases c
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TABLE 18.1

Type of mechanization Cyimax A c ast,ad

Split flap (6, = w/3; bf = 0.3 b) 2.!6 0.87 0.24

Trailing-edge flap without

profiled slot f /4;

t, ).3 b) 1.95 0.66 0.21

, tralIng-edge flap
(,. -, ., 0.5 b) 1.98 0.69 0.21

Extendim: t ra ing-edge flap
(6f. = !/4; bf =  .-3 b) 2.14? 1.13 0.26

The slat has a winglike shape and is located along the leading

edge of the wing. At high angles of attack a profiled slot is formed

between the wing and the slat (Figure 18.16). The effect of the slat

lies in the fact that it deflects the jet leaving the profiled slot

downward and thus aids in holding the flow on the upper surface of

the wing. The gradual narrowing of the slot causes the air velocity

to increase. The jet discharging at high velocity through the slot

shifts the point of boundary layer separation on :;he upper surface

of the wing downstream and prevents flow separat nn with further

increase of the angle of attack.

As a result of the slat

action there is an increase of
V. the wing stalling angle of attack

. and the coefficient c y ax The

curves cy f(a) for a wing with

and without slats are shown in

Figure 18.15. LeaditLg-edge flap Pigure 18.17. These curVv 3how

that Cy max for the wing with

. -its increases significant ly (by

50% on the average), ani there is
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a) b)

Figure 18.16. Flow around wing at high $
angle of attack with undeflected (a)
and deflected (b) slats

CY a considerable increase of the

stall angle of attack. This

latter factor prevents complete

I !utilization of the slat effect,
since this would lead to increase

of the landing angle of attackSI ,
I I and complication of the airplane

o landing and takeoff process. For

F1athis reason, on most airplanes
Figure 18.17. Curve c = f(a) for wing
wing with and without slats:

1 - wing with slats; tips in order to increase aileron

2 - wing without slats effectiveness at high angles of

attack.

Multislotted win.gs. Negative pressure (F < 0) is formed on the

upper surface of the wing at high angles of attack and positive pres-

sure on the lower surface (F > 0). If we make one or more slots in

the wing, then as a result of the pressure difference part of the air

will flow through the slots from the lower surface of the wing to the

upper surface. The discharging jets lead to downstream shift of the

boundary layer separation point. The effect will be the greater, the

more the jet cortracts in the direction of the flow (Figure 18.18).

Multislotted wings increase c by a factor of 2.5 - 3 or more.

However, it is difficult to use slotted wings on real flight vehi-l.cs
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because of structural complexity.

Jet flaps and slats. Studies

have recently been initiated of

the so-called Jet flaps and slats,

A strong Jet is blown into a

Figure 18.18. Profile o narrow slot located along the

"slotted" (multislotted) wing trailing edge of the wing (Jet

flap) or near the leading edge of

the wing (jet slat), as a result

o.f :'.i . i :c ;improve-ment of the flow around the wing and at the

same time a re:-ztive force is created by the jet (in the Jet flap case).

As a result, there is considerable increase of the coefficient

Cmax (without increase of the angle as), which makes it possible

to perform landings at comparatively low speeds.

Spoilers or flow interrupters consist of flat or slightly curvod

plates, located along the span, which can be extended through slots

in the wing approximately along the normal to the wing surface.

Spoilers are capable of causing boundary layer transition or even flow

separation from the wing surface, depending on the spoiler extension

height. TbJs phenomenon is accompanied by rie-disvribution of the pres-

sure over the profile. In this case, the pressure changes considerably.

not only on that side of the profile where the spoiler is extended,

but also on the opposite side. In nany cases the pressure redistri-

bution cc.used by the spoiler leads to change of' the coefficients ex,

cl, c . The magnitude and sign of the pressure coefficient change

depends not only or s;poiler height bat also on spoiler l)cation along

the chord.

Spoiler operation has a deceleraLing effect on the flow ahead

of it: the local velocities ahead of the spoiler decrease arO t'e

pressure increases. -. o pressure decreases behind the spoiler, and
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a suction region is created. Sometimes the spoilers are made comb-like

(intermittent) in order to maintain smooth flow over the wing and

-reduce separation drag.

Effect of wing planform on mechanization effectiveness. The

deflection of split or trailing-edge flaps has practically no effect

on the derivaives co,=V and within the limits of linear rela-

tions cy = f(c) and cm = f(c ), but does affect markedly the value of
y

the angle a for cy 0 . The change of the magnitude of the angle of

attack aOf for cy = 0 resulting from deflection of split or trailing

edge flaps is determined by the type and geometric parameters of the

mechanization.

For swept wings '* is considerably lower than for unswept wings

of large aspect ratio. Consequently, with increase of the sweep angle

the lift increment Ac owing to mechanization decreases (Figure 18.19).
y

The mechan:.zat!on effectiveness decreases sharply for swept wings

at angles of attack near the stall. Fo- example, for X=./4; q=4: =4,5

flap deflection through an angle 6=r/3 yields practically no increase

of c

For sweep angles X..,. larger than 0.9 rad, the split and trailing-

edge flaps nearly always lose their effectiveness at the stalling

angles of attack. Wing aspect ratio has a similar effect on mechani-

zation effectiveness: the mechanization effectiveness decreases with

decrease of the aspect ratio.

The unfavorable influence of high sweep and low aspect ratio on
flap effectiveness and wing lift makes it necessary to use more effec-

tive mechanization techniques, for example, extending split flaps,

extending trailing-edge flaps, and so on. In addition, use is made

of increased taper ratio; Jn this case, the relative area of the

trailing-edge flaps is increased, and there is an associated increase

of their effectiveness. Sometimes aerodynamic fences are located on

the upper surfacE of swept wings in the areas where the trailing-edge
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flaps are located. In this case,
X=O the flow approaches plane-parallel

flow, and there is an increase of

the flap effectiveness. Boundary
X7-- layer control by blowing and

.suction is very effective, and

use is also made of jec flaps.

Figure i8.19. Effec:; of wing
planform on mechanization effec-
tiveness

§18.11. Influence of Ground Effect on Maximal

Lift Coefficient and Wing Polar

When the airplane travels near the ground (during takeoff and

landing) the physical cornditions of the flow around the wing change,

since the ground surface restricts the flow. In this case, the down-

wash behind the wing cannot develop as it doe ns at higher altitudes.

As a result of the pressure increase below tne wing, the velocity

near the leading edge Df the wing increases markedly, which leads to

redistrbution of the pressure on the profiLe (Figure 18.20). Since

there i. an i!ncrease of the positlve pressure gradient,this redistri-

bution tends to cause the bouna.ary layer on the upper surface of the

wing to separate. As a resu]t of the pressure redistrlbutlon on the

upper and lower wing surface.i, the lift coefficient incre p.3-s for a

given a, but the stalling angle -. attack decreascs. In this case,

there iz; a decrease of the maximal lift coefficient (Figure l£..:.a)

The a ( somewhat hectusc of th(: ground o"-t. The

reason for, E , r eag.t'e(uct ion is the appearance of a s,, t )n force,
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which arises as a result of

pressure reduction near the

leading edge and downwash reduc-

tlon behind the wing (the ground

surface prevents downward deflec-

tion of the flow). The first

factor leads to reduction of

-- ...... .. -the pressure drag - the wing

polar shifts to the left -

Figure 18.20. Influence of ground while the second factor leads
effect on pressure distribution
over profile: to reduction of the induced

1 - near ground; 2 - far from ground drag - the polar has lower

slope (Figure 18.21b). This

pressure redistribution has a

still more marked nature for a wing with flaps deflected (see Figure

18.21a). A wing leading edge which can be deflected downward may be

used to improve the flow around the wing near the ground.

The induced drag reduction during landing and takeoff is eval-

uated by introducing a fictitious aspect ratio, defined from the

formula

2 233 8k

a) b) b)

Figure 18.21. Change of wing aerodynamic
characteristics under influence of ground
effect:

1 - near ground; 2 - far from ground.
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where Aef f  is the effective wing aspect ratio;

I is the wing span;

h is the distance between the wing focus and the ground

with the a !-plane parked.

REVIEW QUESTIONS

1. What factors affect the magnitude of the maximal lift

cei~c .nt, and to what degree?

2. W!, r. .:-es boundary layer separation begin at high angles

of attaci, .- .gt, trapezoidal, and swept wings?

3. ',%,hat measures are used tc. prevent boundary layer separation

in the Lip re,-ions of the swept wing?

14. Show graphically the dependence of cy on the angle of attack

for a wing with slats and for a wing with trailing-edge flaps. What

is the difference netween these relations?

5. Draw the polar of a wing without mecharizl.ation and with

deflected trailing edge flaps. How do the 'IfA', drag, and efficiency

of the wing vary as the flaps are deflected? How does flap deflection

affect the stalling angie of attack?

1. Find tre maximal lift co.ffvoi.' t of .1 wing ;w.th trapezoidal

planform, with e3l111 1r'a- circularjc.r distribution along the span If

the wlnT, area S = 32 m , wing aspect ratio X 8, taper ratio n = 5,

maximal s,.ction lift coefficLent 1. -- .72.

Solution. We shal use the Ts !w Ihc, d f. wh tch we f

find t' nr i'cn,'!t " aimen i, ,, , nd c !rculatin di stribution.
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The wing span

The wing area

I 2 2 2

Hence we find the tip chord length:

2S 2.32 2
bsu-( 1 ) 16(5+1)306

IThe root chord
2I

bx=Ijb.O=5.T=3,33 .3

The mean aerodynamic chord

1 16

By assumption, the circulation distribution is elliptic, so that

Using the formula for the area of an ellipse, we express the

maximal circulation in terms of the spanwise average

We obtain for the circulation distribution

(a)

where
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We find the quantity cy mAx st from the relation

• , c . (b)

where " e=_
- b"

This formula is obtained if tie use the coupling Equation (16.14),

settlngr cy e and cy st = 1. We summarize the calculations in a

0 0.2 0. 0. 6 0. o0oI  0.9 0.9 1,.0
I I £ o~

1.1 1. 110 1,35 .1.,03 0.677 0.615 0.502 0.35 0
1.67 1.40 1,14 0.87 0.60 0.54 0.47 0.40 0,33
0,677 0.793 0 908 04 1 13 1 1.07 i 0

Then we use Iigure 18.8 to find graphically

rymax Kp= 1,51.

2. For the conditions of the preceding problem, plot the wing

polar if the flight sneod at sea level V = 1,; km/hr, profile

relative thickness c = 0.14, point of tran iF1on of l'iminar boundary

layer to turbulent F,='0.2. oc,!O'=4,b. S-zo,06, and zero lift angle ao=-0,026
rad. Also plot the lift coefficient versus angle of attack and note
the angorl )'I oa, c n the w Jng polar.
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CHAPTER XIX

WING AERODYNAMIC COEFFICIENTS AT SUBSONIC
AND TRANSONIC SPEEDS

919.1. Effect of Compressibility on Aerodynamic

Characteristics of Finite-Span Wing in Subsonic Flow

It was shown in Chapter 13 that in the f,rst approximation the

aerodynamic characteristics of a profile in zubsonic flow are connected

with the aerodynamic characteristics of the profile in incompressible

flow by relations obtained on the basis of linearization of (13.10)

c cyn.celVi -. M. (19.1)
m __ , m p'.eneV

)(., ,-- W . (19.2)

To evaluate the effect of compressibility on the characteristics

of the finite-span wing, we use the hypothesis of plane sections,

assuming that the aerodynamic properties of the individual wing sec-

tions are completely determined by the flow conditions at these sections
(velocities and angles of attack). Comparison of theoretical and

experimental data shows that the hypothesis of plane sections is

applicable for wings of comparatively large aspect ratio (X > 3).
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The expression for the coefficient c of the finite-span wing

has the form
2S c,,,b(z)dz.

2-'-

If we use (19.1) for Cy sec' on the bpsis of the hypothesis of plane

sections we obtain

(19.3)

, -a'utla_ "-. ilari¥ the relation

M2 (19.4I)

Formulas (19.3), (19.4) make it possible to calculate approximately

the aerodynamic characteristics of a wing in compressible flow if the

wing characterics in incompressible flow are known.

Applying the hypothesis on the analogy between swept and yawed

wings, we obtain Fne connection between c for sections normal to the

wing axis

' i o~t(19.5)

Assuming t'at c Y 6W depends linearly on , we can calculate ca

for comi.eu;sible flow

_VT____ V a (19.6)
4 + -+ Tp)

As % 0 we obta.h (17.8) from (19.6).

At angles ',3ck ne'un the .:;;a 1 , compressibility affects the
lifting cm Ib'.iVte o " the wing. As a result of compres,'liiity

there is an 1',cr -, r.he pressure gradient on the ' , surface of
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the wing and Increase of the boundary

layer thickness. The increa:;e of the

press;re gradient and the simultane-

ous increase of the boundary layer
thickness lead to premature separa-

i l l |tion of rhe compressible fluid flow

in comparison with incompressible

-fluid flow: c and a decrease.L i ymax st-
-00 VAN 4* O 4~ 44V

& rad Figure 19.1 shows curves of

cy = f(a) for the An-24 airplane wing
Figure 19.1. Wing lift

coefficient c of An-24 at M = 0.15 and M = 0.5. We see

airplane versus a.from the figure that cy will be larger

at the same angles of attack for the

wing in the higher speed flow, i.e., with the larger Mach number. The

stalling angle of attack aot and the coefficient cy Tax decrease with

increase of the Mach number, since at the higher speed boundary layer

separation begins at a lower angle of attack.

The expression for the drag coefficient of the finite-span wing

has the form

- i

where

c's CC% -xeq + CXLIm

or

In the case of flow without separation, the wing profile drag coeffic-

ient is independent of c Ynd is equal to the drag coefficient for

c = 0
y
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The wing induced drag coefficient is found from the fcrmula

The equation of the wing polar for subsonic flow has the form

2

(IO (19.7)

The effect of M on the induced drag is accounted for by the

presence in (19.7) of the quantity cy, which depends on M. The effect

of M., on the profile drag is accounted for by the additional coefficient

Tj,= -cfom which can be found from the curves of Figures 13.6 and 13.7.
§19.2. Critical Mach Number of Finite-Span Wing

Just as for a profile, the critical Mach number of a wing is

that freestream Mach number at which local supersonic zones appear on

the wing surface.

The critical Mach number separates the subsonic regime of flow

around the wing from the mixed (transonic) flow regime, in which there

are both subsonic and supersonic local velocities.

The methods for determining Mcr prof make it possible to determine

the value of Mcr which is applicable only for a straight wing of infi-
nite span. The value of Mcr for real wings may differ significantly

from Mcr prof because of the exi3tence of sweep and low aspect ratio,

which lead to flow having a three-dimensional nature. Exact methods

for calculating Mcr for the swept wing have not yet been developed

because of the complexity in accounting for the influence of the center-

line and tip effects on the nature of the flow Therefore, for prac-

tical purposes experimental data are most reliable for determining the

effect of wing sweep on the value of Mcr.

The increment AMcrX of the critical Mach number Mcr when the

sweep angle measured along the maximal thickness line is varied is

shown in Figure 19.2. We see from this figure, first c, all, that
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Figure 19.2. AMcrx versus Figure 19.3. AMcrA versus
M (cy = 0) and wing Mcr prof (cy = 0) and wing
cr prof yrpo

sweep angle along maximal aspect ratio.
thic!-ness line.

there is a very marked influence of sweep, particularly for compara-

tively small Mcr; secondly, we can see that no sweep angle increase

can make it possible to obtain a value of Mcr exceeding one, i.e.,

Mcr is always less than one. This follows from the fact that as

M0 l we can always find near the wing surface a zone within the limits

of which the local velocity will be greater than the freestream veloc-

ity. It is from this zone that the shock stall begins to develop when

the local speed becomes equal to the critical velocity a cr.

Decrease of the wing aspect ratio A affects the value of Mcr just

as increase of the sweep does. For low aspect ratio wings the tip

crossflow effects encompass nearly the entire wing surface, reducing

the local underpressures, which in accordance with the Khristianovich

theory (see Chapter 14) leads to increase of Mcr. To determine the

increment AMcrAl we can use the curves of Figure 19.3, which show that

for an aspect ratio greater than two this correction does not reach

one percent and can be neglectad.

Since the aspect ratio of modern passenger airplane wings is a

quantity of order 8-12, the aspect ratio for these air nes does not

affect the value of Mcr significantly. A quite 1  rent situation is
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seen in supersonic aviation, where wings with aspect ratio A < 2 may

frequently be encountered.

Thus, the relation for the wing Mcr can be written in the form

M,=M,4.. +AMz+ ,. (19.8)

§19.3. Wing Aerodynamic Characteristics at
Transonic Flight Speeds

Exceeding Mcr in flight always involves the appearance of super-
sonic zones, which are closed by compression shocks. As M is increased

the supersonic zones develop, extending quite rapidly to the trailing

edge of the wing and comparatively slowly to the leading edge. At

M = 1 the subsonic zone is retained primarily only at the leading
edge of the wing.

When M. 3 1 a normal compression shock develops ahead of the

rounded leading edge of the wing. Further from the wing the normal

shock front becomes curved and transitions into an oblique shock. As

M is increased, the shock approaches the leading edge and the subsonic

zone becomes smaller. The bow shock becomes an oblique shock and

"attaches" to the leading edge at Mach numbers M= 1.3 - 1.4 for

wings with sharp leading edge and at M = 2 or more for blunt leading

edges. Beginning at this moment the transonic flow regime around the

wing becon-es supersonic. The relations which are valid for transonic

flows are 'iupplanted by the supersonic relations only when the veloc-

ities become supersonic over the entire wing surface.

Transonic flow theory makes possible basically only a qualitative

analysis in view of the exceptional complexity of transonic flow

description.

The lift coefficients of a wing with symmetric profile in the

transonic flow regime are determined with the aid of the equation
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c,=,(Aa-ft) which is valid on the linear part of the curve c f(0
The quantity ca is usually found from curves plotted on the basis of

y
experimental data, which yield the relation

where I n r-., ).gi, , ). -are the similarity parameters in the tran-

sonic regime, established by similarity theory.

Figure 19.4 shows the relation

g II i

4/o..-¢,ol ! I ' i-
j ~~402U- - -

i1. oI 1. I .I I

Figure 19.4. Curves for calculating lift coefficients
of isolated wings (Atg Xc = 3)

The continuous curves are experimental results, averaged with respect

to n in view of the weak influence of the taper ratio.

Wing drag in transonic flow differs from the drag in subsonic

flow by the magnitude of the additional drag, termed wave drag.

The wing drag coefficient is determined from the usual formula

C'=C3+ CX. (19.9)

The first term cx0 is independent of lift and is made up from the

boundary layer friction drag cxO £r and the wave drag cxo w
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(19.10)

The friction drag coefficient c fr is found with the aid of the

formulas and graphs which are valid for the subsonic flow regimes. The

coefficient cxo w, waich accounts for the wave drag for c. = 0, is

determined experimentally.

The second term cxi in (19.9) is the drag which depends on the

lift coefficient. Since there are both subsonic and supersonic flow

zones on the wing, the magnitude of this drag component occupies an

inter.,iediate position between the induced drags for the subsonic and

supersonic regimes.

The approximate method developed by Kuznetsov for determining

induced drag amounts to the following. The larger the lift coefficient,

the smaller is the corresponding Mcr and, conversely, if we as3sume a

value of Kcr , then as cy increases the shock stall develops a5 a quite

definite value of cy, which we term cy cr" The connection between

Mar and Cycr for the upper surface of the wing is shown in Figure

19.5.

If c <c y cr the induced drag appears as a result of the down-

wash angle Aa and is found from the formula

e(19.11)

When c > cycr additional lift and drag increase takes place

because of the presence of the supersonic zones. In this case we

assume that the additional aerodynamic force AR, in accordance with

the supersonic flow laws (see Chapter 15), will be perpendicular to

the wing chord, i.e., it will form the angle a with the normal to the

flow direction (Figure 19.6).

Projecting the forces R and AR on the coordinate axes Jn the

wind system and assuming cosa-cosAal1, sin a a, in view of the smallness
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Figure 19.5. M4cr versus Cy cr constructing wing polar for

for upper surface of wing.M®•M 
.

of the angle or attack and the downwash angle, 
we obtain the formulas

for wing lift and induced drag 
in the form

Y=Y= + AY=zR+ AR;

or, converting to the aerodynamic 
coefficients, we have

cu==e2 11 -+ ac, 1 (19.12)

Here Cxi cr is the induced drag coefficient, 
defined by (19.11) for

Cy = cy cr ".

Excluding Acy from (19.12) and 
replacing cxi cr using (19.11),

we obtain
-(19.3)

gii

44

(19.13) can be reduced 
to the form

F&= (+) (1 9 .iJ)
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,OM.C4& The quantity cy is determined from
0 cr

4 /,Aa graph for each flight Mach number.

545 Calculations show that the values

485 found using (19.14) are quite close

* -to the values obtained experimentally.

We note that for c< c there isy y cr
no shock stall and in this case

42
(19.11) should be used.

0 07 409 a," The equation of the polar can
F~igure 19.7. Wing polars for be obtained if in (19.9) we substi-

different M (A = 7; a = 0.09; tute the value of the induced drag

c = 0.52 rad). coefficient from (19.14)

ee, (I!y-P+ +-,,

The wing polars in the coordinates cy and cx for various M.,
plotted using (19.15), are shown in Figure 19.7.

The nature of the polars for different M can be analyzed with the

aid of the curve of Figure 19.5. We divide the area of the figure
into three zones. In zone I there is no wave drag over the entire
range of values of Cy, and the wing polars at these M are expressed
by the equation of the polar for subsonic flow. We see from Figure
19.7 that zone I ends at M = 0.65. In zone II, corresponding to
0.65 < M. < 0.8 = Mcr (Cy = 0), the shock stall begins when thu value
Cy = C is reached. For small values of Cy, the polars for M in

thic range coincide with the wing polar in subsonic flow, while

be,.ining with Cy = c y cr they deviate to the right. In zone III
there 4ill be wave drag even for cy = 0. With increase of M
beginning with Mor (Cy = 0), the polars shift to the right and do not

coincide witl. the wing polar in subsonic flow for any values o, y.
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§ Wing Moment Characteristics

The wing moment coefficient about an axis passing through the

leading edge of the equivalent rectangular wing is defined, just as

for subsonic flows, by the relation

e.=e.0- . (19.16)

where i is the ratio of the distance from the leading edge to theF
wing focus to the MAC length.

Sufficient experimental daa have now been obtained to evaluate

the location of the wing focus for quite a wide range of flow condi-

tions. Experiment shows that the similarity criteria obtained from

linear theory make it possible to treat the experimental data quite

well in the form of the relations

Figure 19.8 shows two plots - for straight and swept wings with

symmetric profile (R = XD). The curves shown on both plots correspond

to the values [=0,5131]. When the value of the parameter );jC is

changed,the wing focus location changes. We see from the figures

that for wings with small taper ratio n, and particularly for straight

wings, the focus shifts forward as M. approaches Mcr. For most wings

it is characteristic that the focus, located for M < M at about one

quarter of the chord from the leading edge, shifts aft at large values

of M , nearly reaching the midpoint of the chord.

The experimental curves in Figure 19.8 make it possible to

conclude that very large fore and aft shifts of the focus are possible

in the transonic M range. It is likely that this can be explained

by the earlier development of the supersonic zone on the upper surface

and then on the lower surface of the wing. Experiments show that tvth

increase of the angle of attack in the transonic regime the focus

shifts aft, particularly for a small value of the parameter X tg X.
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b)

Figure 19.8. Plot for determining center of
pressure coordinates of isolated wings with
symmetric profile: a - straight (Xtgxc = 0);
b - swept (Xtgx = 3.0).

C

_____Considering that in the first

!5 At1rX:O approximation the variation of

I Iwith a in the angle of attack range

I- ,' 0.1 rad < a < 0.4 rad is linear, we
,------------- can determine the value of the focus

4 , dimensionless coordinate in this

range from the formula

SII 1 i II- -  (AiA.-o.. (19.17)

Figure 19.9. Effect of param- The quantities (XF)a = 0.1 and

eter h- on straight wing (AXF)a = 0.4 are determined with the

center of pres'sure location, aid of graphs.
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The effect of the transonic similarity parameter on the location

of the center of pressure of a straight wing with symmetric profile is

shown in Figure 19.9.

REVIEW QUESTIONS

1. How does the wing Mcr depend on its geometric paramete:,s?

2. Write the equation of the wing polar for different M .

3. Analyze the wing moment characteristics.

PROBLEMS

1. Find Mcr for an airplane under the following conditions:

M .prof = 0.78, wing sweep angle x = 0.78 rad, wing aspect ratio
A =2.

Answer. Mcr = 0.867.

2. Find ca for a swept wing in compressible flow if
y

c.,=4,7 x=O,58 xad; X=5,6;

TCT p=,O; M.=0,8.

Solution. According to (19.6)

4.7 4.
4.- .14,7.1.1

S+ .4225-.+ 3.145.6
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CHAPTER XX

AERODYNAMICS OF WING IN SUPERSONIC FLOW

§20.1. Effect of Wing Planform on Nature of

Supersonic Flow Past Wing

Just as in the case of subsonic velocities, in supersonic flow

the wing planform has a significant effect oi the nature of the flow

and this leads to differences between the aerodynamic characteristics

of the finite-span wing and those of the profile in supersonic flow.

However, we note that the influence of tip effects, sweep, and magni-

tude of the aspect ratio at supersonic speeds will be different in

comparison with thq influence of these factors on the nature of the

flow about the wing at subsonic speeds.

The influence of the wing tips on the flow over the central part

of a straight wing is illustrated in Figure 20.1. In supersonic flow

the disturbance zone generated by the wing tips is bounded by two

disturbance cones with apexes at the lateral leading edges. The cone

halfangle is found from the relation

T - -(20.1)
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xx

Figure 20.1. Influence of Figure 20.2. Supersonic flow past

wing tips for supersonic wing of arbitrary planform.
flow around wing.

Outside the disturbance cones the flow is not listurbed and the

influence of the tip effects is not felt. While in subsonic flow the

tip effects encompass the entire wing suzface S = bZ, at supersonic

speeds the influence of the tips is felt only on the area S'.

For the straight wing

S'

The area ratio

s hi VM%'-1 _-IV -

Consequently, the influence of the tip effects on the magnitude of

the aerodynamic coefficients depends on the quantity VM'-I. • The

larger the wing aspect ratio X or-the Mach number M., the smaller is

the fraction of the disturbed zones S' in the overall wing area S,

and this means that the influence of the tips on the wing aerodynamic

characteristics is less.
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The alignment of the leading edge relative to the freestream

velocity vector has a marked inflience on the nature of the flow around

the wing. To see this we examine how the flow approaches a wing of

arbitrary planform (Figure 20.2). We assume that the wing is thin and

is at a small angle of attack in the flow. In this case we can sup-
pose that any point on the wing surface, including any point on the

leading edge, is a source of small disturbances. These disturbances
propagate from each point within a cone with halfangle v, defined by
(20.1).

On the segment BD the leading edge is in undisturbed flow, since

none of the disturbances extend foward ahead of the leading edge (see,

for example, the disturbances at point C). The presence of the wing

is not felt in the approaching stream up to the leading edge itself.

The velocity, pressure, and density in the stream do not change prior

to contact of the stream with the leading edge. This nature of the

flow is typical for supersonic flow over a profile. In this case the

leading edge- is called supersonic.

On the segment AB the stream passes through the disturbance zone

prior to reaching the leading edge. Here the vclocity and parameters

of the air begin to change ahead of the wing in a fashion similar to

that associated with subsonic flow. In this case the leading edge is

termed subsonic. if the leading edge is subsonic, the flows on the

upper and lower surfaces of the wing interact with one another.

It can be shown that for a subsonic leading edge the normal

component of the velocity will be less than the speed of sound, while

for a supersonic leading edge this component will be greater than the

speed of sound. We see from the flow conditLns at point E (Figure

20.2) that the following relation holds between the angles X and u

X>--. (20.2)
2

It follows from (20.2) that
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CO~l51 fl-W..(20.3)

Hence

M.cosz<I.
or

V.cosx<a.
Since V= cos x = Vn , we have

V,<a. (20.4)

Consequently, for a subsonic leading edge in supersonic flow the

relation (20.4) is valid. However, in the following we shall use a

different, simpler relation which is obtaine: from (20.2)

tgx> V- - I. (20.5)

if (20.5) is satisfied the leading edge will be subsonic.

For a supersonic leading edge (point C in Figure 20.2), we have

Hence with account for (20.1) we find that the following condition

must be satisfied for the supersonic leading edge

(20.6)

which is equivalent to the statement that the normal component of the

velocity for the supersonic leading edge is always greater than the

speed of sound in the undisturbed flow.

In the case in which the disturbance lines pass along the leading

edge, i.e., when

(20.7)

the leading edge is termed sonic.
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If we multiply both sides of (20.5) by the value of the wing

aspect ratio A, we obtain for the subsonic leading edge

o(20.8)

where X0 is the sweep angle along the wing leading edge. The condition

for subsonic nature of the leading edge flow is encountered most

frequently in this form. This is explained by the fact that the

expressions X tg X and I .- I are the supersonic similarity criteria,

which follows from supersonic flow wing theory(I  The quantity A tg X,

is called the reduced sweep and I VM1- I is called the reduced aspect

ratio.

It is obvious that the following inequality holds for the super-

sonic leading edge

'tg X W-IT. (20.9)

In calculations we sometimes encounter subsonic and supersonic

trailing edges, maximal thickness lines, and so on. In this case the

sweep angle in (20.8) and (20.9) is measured relative to the corres-

ponding lines.

The pressure distribution along the wing chord, and also the

magnitudes of the aerodynamic coefficients are quite different for

wings with subsonic and supersonic leading edges.

The stream approaching a supersonic leading edge remains undis-

turbed right up to the oblique compression shocks or the expansion

waves, which r' est on the leading edge (Figure 20.3a). The leading

edge separates the stream into upper and lower parts, i.e., the stag-

nation point lieSon the leading edge.

In the subsonic leading edge case (Figure 20.3b), flow which has

already been disturbrd approaches the wing, and therefore there are no

Footnote (1) appears on page 2111

FTD-HC-23-720-71 202



shocks immediately ahead of the

leading edge. The stagnaticn

A print is shifted downward rela-

_tive to the wing leading edge;

the stream filaments flow arounda) -
the leading edge with high veloc-

ity; therefore, a marked under-

pressure develops on the upper

surface of the wing near the

leading edge and creates the so-b)
called suction force, which is
directed forward and reduces

Figure 20.3. Flow past infinite-
span wing with supersonic (a) the wing drag.
and subsonic (b) leading edges.

The suction force develops

only in the case in which the

leading edge is subsonic and at angles of attack at which c c 0, i.e.,

the suction force arises only in the presence of a lift force. In

order to increase the suction force, in the subsonic leading edgc case

the wing profile has a blunted and rounded nose, just iixe the su: --

sonic profiles, which makes it possible to obtain the maximal. suction

force, other conditions being the same. The stalling angles Df attack

for wings with rounded nose are considerably higher than for wings

with sharp nose, and this is of great importance in providing low

takeoff and landing speeds.

§20.2. Lift Force

Because of the wing planform influence, the magnitude of the lift

force and therefore the magnitude of the lift coefficient of the

finite-span wing differ from the analogous quantities for th.. profile

at the same angle of attaeA r. Theoretical calculations have ben

made only for comparatively simple wing planforms and, as a rule, for

supersonic leading edges.
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For the wings of supersonic airplanes the lift coefficient is

proportional to the angle of attack

C -ea. (20.10)

The lift coefficient of the straight wing of infinite span can

be fo:nd from (15.12), obtained for the profile,

cV= .4e(20.10')

This formula is also valid for the yawed wing of infinite span if we

use the "normal" flow characteristics. In this case we must consider

that

-.- ;= M,=M.cosP.

Then we have

4a'c, = coSPV ' cos2p-1

Assuming that the lift coefficients of the yawed and straight

wings are connected with one another by the relation (17.5), we obtain

4 cos~ _____

CY==--L = 4d (20.11)

Since yawing reduces the "normal" flow Mach number, the lift

coefficient also increases with increase of the yaw angle. This is

valid provided the leading edge of the yawed wing is supersonic. The

increase of the yawed wing lift coefficient in supersonic flow is a

consequence of the fundamental difference between the subsonic and

supersonic flow characteristics. (In subsonic flow, as we already

know from Chapter XVII, yaw reduces the lift coefficient).

The following forrulias have been obtained for thp triangular wing

with supersonic leactng edge

4a 4
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function ofj 12_--for

Figure 20.4. c = f(M, ) for wing.

Y
triangular wing calculated by
the method of conical sections.

i.o., the same formulas as for the profile (the lift force is

independent of the sweep angle). Incidentally, for the triangular

wing the reduced sweep is a constant quar~ity, namely ). tg X0 = 4,

which is easily seen from geometric constructions. Consequently this

similarity criterion is satisfied automatically when molding triangular

wings.

While for a triangular wing with supersonic leading edge the

quantities cy and cc depend only on 1 sweep plays a very sign.'ficanL
y y

role for subsonic leading edges. Figure 20.4 shows the relation

cc = f(M X), calculated for a triangular wing by the method of conical

sections The extreme right-hand curve, which is the envelope,

correspond- t the supersonic leading edge.

For a wing of rectangular planform theoretical constructions [4]

lead for x VM-1 >2 to the result

1 I 1~ (20.13)

Footnote (2) appears on page 2111
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The quantity I 1M-- (one of the supersonic similarity criteria)

.'s the determining factor for the straignt wing. The curve plotted

from. (20.13) is shown in I-igure 20.5.

All three similarity criteria

:,,u.t be ,.take, into consideration for other wing planforims in determining

the lift. Usually graphs constructed on the basis of experimental data

are used fc:' practical purposes: one such graph is shown in Figure

!9.4, where the sweco is taken along the maximal thickness line.

§20.3. Wave-induced Drag_

The drag coefficient of a wi;ig in supersonic flow is made up of

two comocnents, one of which Cx0 is independent of the lift, while the

other c depends on the lift

C'=CO+C.,. (20.15)

The component cxi has a different nature for subsonic and super-

sonic velocities, being basically vortical Por the former and wave for

the latter.

The drag coe!"'icient cxi depends very little on the profIle sr.ape

and its origin can be explained as follows. When an Jnfinitely thin

wing interacts with a supersonic stream at the- angle of attack a, dif-

ferent pressures develop on the upper and lower surfaces of the wing.

The resultant R of the pressure forces for a thin wing witn supersonic

leading edge will be perpendicular to the wing chord plane (Figura

20.6), and this means that in the wind coordinate system it 'ar. oe

resolved 1nr, two mutu, ,'>y perpendicular components - lift and inauced

drag.
Y=R cos a RI;

X, S1Da sh,- Rai- Y-.
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Converting t) coefficients, we have

cXI=c a, (20.16)

or, in accordance with (20.10'),

c-= (20.16')

YE , .In contrast with the subsonic

regimes, in supersonic flow the

induced drag of an infinite-span

wing is not equal to zero if the lift

force is not equal to zero, since in

this case the induced Irag develops

from sources other than tip effects.

Figure 20.6. Illustration for
determining induced drag of Using (20.16) and knowing the
thin-profile wing in super-
sonic flow. wing lift coefficient, we can find

the induced 6rag coefficient.

Relation (20.16) is valid only for wing.; with supersonic leading edge;

otherwise the aerodynamic force R will be inclined somewhat forwa:.d

relative to the normal co the wing chord as a result of the influence

of the suction force, which reduces the induced drag.

We obtain the induced drag coefficient of a yawed wing in

accordance with (20.11) and (20.16) in the form

Ix _ c2 (20.-17)

or

4
(20 . 7'?

Comparing (20.16'), valid for the straight wing of infInite span, with

(20.17') for tho yawed wing, we obtain
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Consequently, the induced drag of a yawed wing is greater than that

of a straight wing for the same angles of attack, since the lift

coefficient of the yawed wing is greater than that of the straight

:.ing. It is more proper to compare the drag for the same values of

c ; then the induced drag coefficient of the yawed wing will be lower.

- induced drag of a triangular wing with supersonic leading

.:dge will be the same as for a straight wing of infinite span. This

follo',ws from: (20.12)
42

or

C2 c.- C2 (20.18)

The lift coefficient for the straight wing is defined by (20.13).

Then we can write for the induced drag

4}
__-___-5 1 2 . (20.19)

A plot of the relation - (= / Z!= is shown in Figure 20.5.

§20.11. Wing Wave Drag For c 0

The wing drag for cy 0 is made up of the profile drag C

which arises basIcally a,- a resulu c, viscous friction Jn the boundary

layer and the wave-profile drag cx w' which arises as a result of

energy dissipation in the compression Prcks. requently the wing

drag for cy = 0 is called the minirai drag.

The pofile drag @officient c is 2um'd by the methods described

in Chapter 7",. A- .'or the wave--p-,file drag, relations fo" this drag

have been obtain~d Lct, experimenta]ly and .h-oreticalI%. ,.uwever,

the experimen al tJt - are more re] 'able.
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In the general case the results of the theoretical and experimental

studies are conveniently represented in the form of the'wave-profile

drag coefficient c as a function of the supersonic similarity
Xp w

criteria

=f fM' 1, profile shape).
*2 (20.20)

Comparison of the resuits of theoretical and experimental studies

for a triangular wing (n = -) is shown in Figure 20.7. The theoretical

curves l and 2 correspond to

two values of the maximal thick-

ness line location: Xc 0.5;

ZIP AXc = 0.3. The experimental

J / k'curve 3 corresponds to Rc = 0.5.

The presence of the dis-

continuity points A and B on

the theoretical curves is

O' explained by the fact that for

corresponding values of M. the

Figure 20.7. Influence of maximal maximal thickness line (i and
profile thickness location on the leading edge become super-
wave-profile drag: 1 - theoret-

al curve (c = 0.5); 2 - sonic at these points, i.e.,

theoretical curve (Xc = 0.3); the relations

3 - experimental curve ( = 0.5). M--=tgC M- =tgx.

hold for these points.

For other wing shapes the curves are plotted in accordance with

(20.eO). Curves of this sort for trapezoidal wings with rhombic pro--

file and taper ratio n = 5 are shown in Figure 20.8. The broken

curves are theoretical results. The continuous curves are experimental

results, which approach the theoretical curves in the regicn of large

values of
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CZ,- Experiment shows that the
" "-i -- - profile shape has a marked

A u- t e1i -,- effect on the wave-profile drag

L - :-only when the maximal thickness

-L - w- .~ - line becomes supersonic, i.e.,

I' L 7 - when ;tg-/, fM! . If the

Amaximal thickness line is sub-

, -- sonic, the profile shape has

\ - nearly no influence on the

wave-profile drag.

Analysis of the minimal
wing drag coefficient variation

for different M shows that its

increase, beginning at M. equal

__ to the critical value, continues

approximately up to the moment

when the maximal thickness line
Figure 20.8. Graph for calcu-
lating wave drag of trapezoidal
wing with rhombic profile supersonic leading edge the
( = 0.5; =). coefficie't c P decreases with

increase of M= (see Chapter XV),

- 1 0as a result of which the wing

C , minimal drag coefficient also

, -. -- decreases.

Increase of the angle of

attack leads to increase of the

SZ //- wing induced drag coefficient

and therefore to increase of
41 4_ the drag coefficient

o c ,00 ,Oq o 4o p6 07i o ~z c-=c-=+c=4iP+C,,-cp, . (20.21)

Figure 20.9. ,ing rolars fo- Wing polars constructed in
transonic and supersonic Mau
range. accordance with (20.21) are
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shown in Figure 20.9. The polar shape i typical for the transonic

and supersonic M range.

520.5. -Moment Characteristids of Wing

in-Supersonic Flow

The wings of supersonic airplanes usually have a symmetric

pr6file. Therefore 'the pitching moment coefficient is zero for a = 0
and is proportional to the angle of attack for comparatively small
values of a. To find. the moment coefficient of a triangular wing about

the axis passing through its apex, we use the fact that the center-of-
pressure coincides with the center of gravity of the triangle, i.e.,

x-2.

3
Then the pitching moment is

2 QV2

M , e.~j !,- Sb.

On the other hand, calculating the pitching moment with the aid of the
moment coefficient, we have

M.== e,. 2 Sb.

Comparing these expressions for Mz, we obtain

2 e (20.22)

or, replacing cy by its value from (20.12), we haveyg

C - (20.23)

Using (20.22) and (20.23), we note that the coefficient cm is referred

to the central chord b0 of the triangular wing,

For a wing of rectangular planform with reduced aspect ratio
the magnitude of the moment coefficient about the leading

edge and the center-of-gravity location are defined on the basis of
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linear thei'. by the equalities

- - 3AMg (20.24),

* 1 j2:=M(20.25

It follows from (20.25) that as M. is increased in the super-

sonic range the center-ofrpressure shifts aft to the midpoint of the

wing chord. Increase of the aspect ratio A has the same effect

(Figure 20.10).

A -For swept and triangular wings,
45 'the center-of-pressure location

can be found from curves similar to

those shown in Figure 19.9. In the

general case the center-of-pressure

0 'I 5 Xl-iF coordinate is expressed by the

relation

Figure 20.10. Influence of M
and aspect ratio A on center- x=fiVM-I,'tg, .of-pressure location.

It follows from the curves that for

large M. taper has very little effect on the center-of-pressure loca-

tion.

REVIEW QUESTIONS

1. What is the difference between subsonic and supersonic wing

leading edges?

2. Explain the cases in which a suction force can arise in

supersonic flow past a wIng.

3. How do tne aerodynamic coefficients Cx, Cy, cm vary with

increase of M ?
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" * What -ing planfokim provides, the least wave drag?

5. -How does the induced-drag chinge -when passing from transonic

to supersonic :speeds?

PROBLEMS

1. Find the .angle of attack of a plane thin wing of an airplane

f ly'ii a H 1= 10,000 m-and V '= 473 rn/sec if the wing area S = 15 m2

and the airplane weight G 4 19,000 N. Find the thrust expended in
ovec6Oming the wing wave drag.

Answer: au o,0225 rk, P=1100ON.

2. An airplane wing sweep angle is 1 rad. Find the airplane
flight speed at which the wing leading edge will be subsonic, sonic,

and supersonic.

SoluUion. According to (20.7), the wing leading edge coincides

With the flow disturbance characteristics Zor

M.=I/- +tg2X ..

Consequently, for flight speeds corresponding to M < 1.85 the leading

edge will be subsonic, and for M. > 1.85 it will be supersonic.
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Footnotd -(l) appear's on page 202 Aerodynamic Components, ofAir-
craft at High Speeds,,edited' by
A. F. Donovan and H. R. Lawrence,
IL, 1959.

Yootnbte (2)-appears on page 205 See, for example, Aerodynamic
Compone nts of Aircraft at -High
Speeds, edited by A. F. Donovan
and H. R. Lawreince, IL, 1959'.
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CHAPTER XXI

AERODYNAMICXHARACTERISTICS OF-BODIES OF REVOLUTION

§21. ... Geometric arid Aerodynamic Characteristics

'of. Bodies of. Revolution

The study of methods for determining the aerodynamic characteristics

of'bodi6esofrevolution is of great importance, since the fuselages

of modern airplanes, external fuel tanks, engine pods, missile and

rocket bodiesusual-;y have the shape of bodies of revolution or

nearly so.

The body of revolution of -the. usual form (Figure 21.1) can be

divided into the forward (heal or nose), middle (cylindrical), and

aft (tail or rear) parts.

The nose section, as a rule, has the form of a conical, ogival

(formed by a circular arc of some radius), or parabolic body. The

nose part of the body of revolution is characterized by the apex

angle T and the fineness ratio Anose

(21.1)
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. 0 where Zn is the distance
- nose

.0 from the nose of the body to its

the m edsection;

nose icyl taft Dmid iS the midsection
_________________ diameter.

i.g By midsection we mean the'Figure, 21.ii Bavic geometric

dimensions of body of revo- section perpendicular to the
lution, longitudinal axis of the body

having the maximal Area. If

the b6dy has a cylindrical po3tion, as shown in Figure 21.1,-then, the

midsection is the cylinder cross section area and Znose is the distance

from the nose of the body to its cylindrical part. In the general

Case the midspcti6n diameter is the diameter of a circle which is

equivalent in area to the midsection.o The cylindrical part of the

body of revolution is also characterized by thefineness ratio

---- (21.2)

The .geometric parameters of the aft part of the body of revolu-

tion are the fineness ratio

"KOIU-- (21.3)

and the taper ratio

Dap,%(21A1)

where dbase is the base diameter (see Figure 21.1).

When bodies of revolution have no base naft = 0.

The fineness ratio of a body of revolution is equal to the sum of

the fineness ratios of its individual parts

Dm.. (21.5)
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Where Lb is the total body length.

;The qanhtity whi,1-s the reciprocal ofthe fineness ratio is.

-galled the relative thicknessot _the body of revolution.

- 1 (21.6)

-The ducted body bf rekvolution is wetted by the flow both

externally and fiterhally. A- exampie of a ducted- body of revolu-

-tion is an engine pod.

Just as: in studying wing aerodynamic-characteristics, the

aerodyahic forces acting on-the body of revolution are examined- in

wind or body coordinate systems. In the wind coordinate system-the

formulas for the lift and drag have the form

YX czqSM, (21.7)

where cy a-d C are the lift and drag coefficients of the body of
y

revolution.

2=-- is the Velocity head;

Smid is the midsoction area.

Conversion to the body coordinate system is accomplished Just as for

the wing (see Chapter XII).

§21.2. Lift of Bodies of Revolution

The lift of a body of revolution immersed in a flow at some

angle of attack can be determined if we know the pressure distribution

on the surface of the body. We see from Figure 21,2 that the pressure

distributioh along the meridional section of a body of revolution

(curve 2) in an incompressible fluid stream is qualitatively very

similar to the pressure distribution over a wing profile (curve 1) of

the same relative thickness and at the same angle of attack. However,
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the underpressure on the body of revolution is considerably -less than

that on. -the ,wing, which is, a result, of the three-dimensional nature

of the flow around the body of revolution.

The 'flow around a body of revolution can-be compared with the

flow.around a wing of very low aspect ratio, for which we know that

the underpressure -on the upper surface, other conditions being the

same, is al*ays less. than that on a wihg, of large aspect ratio because

of the at.r crossflow around the wingtips from the high-pressure region

:'"" into the low-pressure region. Thus, the lift and drag variation of a

body of revolution is. in the first approximation qualitatively, very

similar ,to ,#Ig lift and drag variation at both small and large
Values .of M...

Since the underpressure on a

-- -H b6dy of revolution is less than that

-46 - on a wing, for the same M the
4.-.---" -4--- compressibility effect is less in

"IL "LL ,the case of flow around a body of
1 /41,? 4.# V 45 41 A,7 revolution. Mcr for the body of

V j, - revolution is. considerably higher

L-i - LL. - - than for the wing.

Figure 21.2. Pressure dis-
tribution along wing pro- There are certain differences
file (1) and meridional
section of body of revolu- in the flow around a body of revo-
tion (2) for low M. lution in comparison with the flow

around a wing, and these differences

unquestionably affect the magnitudes of the body of revolution lift

and drag. When air flows past a body of revolution at the angle of

attack x, flow separation takes place on the upper surface a3f the body

(Figure 21.3). The normal force Yn which arises in this case can be

found from the formula

(21.8)
where Vn = V. sin *, ayn a ax cyl i.e., the coefficient cyn is equal

to the drag coefficient of a cylinder in transverse flow, S is the
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Figure. 21-3. Worat force, caused "by crossflowon fbody of revoiution.

area. of the body' Of revolution in plan view.

Experimental data show that flow separation usually -takes place
on th' cylindrical and aft portions of the -body of-revolution. There-

fore, in the -present case the area S-is equal to -the sum of the areas
of the cylindrical and aft parts of the body in plan view.

k cha racteristic: feature of the flow about a body of revolution
with a base section ('aftt * 0), but without an engiin jet leaving the
base, is the appearance of base drag. This drag arises as a result

of the pressure reduction behind the base, which takes place because

of theo-presence of friction between the outer flow past the base and

the flow behind the base. The friction creates an ejecting effect.

The degree of pressure reduction depends in considerable measure

on the structure and thickness of the boundary layer leaving the aft

portion of the body of revolution. The pressure reduction behind the

base is greater for a turbulent boundary layer than for a laminar

layer of the saie thickness because of the greater ejecting capability

of the turbulent boundary layer in comparison with the laminar layer.

This difference decreases as the role of the inertial forces

increases in comparison with the viscous forces, i.e., with increase

of the Reynolds number. The pressure reduction behind the base

decreases with increase of the boundary layer thickness. If the

pressure reduction behind the base is known, the drag force is found

from the formula
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where base is the& pressure behind-thebase;

v :p i the:freestream pressure.

WheOn a suipersonic stream flows akound a -body of-revolution, there,

i! san additioznl effect on the base pressure of the expansion of the

4 -pers6nic flow 'leaving the aft part of the body of revolution. As
kheflow expafds, the pressure in the s-ream decreases. Consequently,

the b ase piessi6re decreases when a supersonic stream flows around a

body,of eyrV tolton. ,:Equalization of the -supersonic -stream at some

distancefrOm- -the base leads to the formation -of a trailing shock

wave.

The wind-coordinate system is-usually used in calculating the

trajectories,:of flight-vehicles. In this case the lift coefficient

of the b6dy of revolution is

c,=- 1 ~oss- sln. - (21.10)

Here the lift coefficient Cy1 of the body of revolution in the body

coordinate system is found from the formula

cn=e,,4+,,+ca+C,4,, (21.11)

wherecy nose Is the lift coefficient of the nose part of the body of

revolution;

cv c is the lift coefficient of the cylindrical part of the

body of revolution;

C is the lift coefficient of the cylindrical and aft parts

owing to the presence of flow separation at large angles

of attack [see (21.8)];

is the lift coefficient of the aft part of the body ofcy aft

revolution.
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"We. know fkrom experimienta data that -the cylindrical ,part -adjacent
to tthed -nos pat-.th o of reVolitIon-,creates 'a ift, fdr~e The
mai~~tuide pfZ this, f orce is Ismall and ts iietf dseparately, but

is iidthe'r combined with -the- lift -of tie lose,-part.' Theni (?LllI) takes
the, friM

- ~ 2112)

-Thd' : rmula for, determining the. lift coeff-icient d~1  referredto
6ehe ids~ftibh adr&a can eb~represented in -the, f6llowing form in
accdanhe with, iear, theoz y

where ~ (21.13) j
-Experiin~nt' thbw.s th'thti coefficient ' depends n~t only on a, but

also 6n the nature of the boundary layer, the M&h number 0,the

-fineness ratio X of the body' 6±' ievolution, and' sever'al othej' factors.

The, d~ftVative cOL caha be represen~ted in 'the f6:e~ifi.of the sum
y1

~ +c~ + ~(21.14~)

where,6cg is the derivative of the nose lift coefficient withy nose
respect to* angle of attack (with account for the cylin-

drical part);

CO! is the derivative of the normal force coefficient of theyn
cylindrical and aft parts with respect to angle of attack;

yaft is the derivative of the lift coefficient of the-aft part
with respect to angle of attack.

The lift coefficient of the nose part of the body of revolution

is found by solving the linearized equation for the disturbed flow
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-

in 0.35 ,for the, turbulent boundary layer;
, 1.2 for the laminar.boundary, layer.,

-The -l6-loing'fOzinula -has- been obtained theoretically for the

.ift 0e6fficient 6f the aft .part

c,,2inuoss(-')~).(21.19)

In real"y the value of C is considerably smaller than. the. - y aft
theoretical value.

The derivative of the lift coefficient of the aft part of the

body of revolution is found from the empirical formula

(21.201

The correction- coefflient- 4 depeids, on Re, M=, and the form of the

aft part,, and accounts for the lift coefficient reduction b.cause of

thickening and separation of the boundary layer on the boattail

= 0.15 - 0.20).
:.a a ca eul

According tb. (21.14) the sum of a nose cyn Iy feuals cyl

Substituting into (21.13) the value of cl, we obtain the expression

for determining the lift coefficient of the body of revolution

r = 1 6 1 G + 0 , P 1 ~ , , 2 ( - 2 p ] a ( 2 1 .2 1 )

Considering that for small angles of attack a2  O, wa have

e.,il= [K o=_ (i _,,,,) ( 21.22 )

If the body cross section is oval rather than circular, the

calculation is made using the formula

4Suj. '(21.23)
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B .. is 6th_ ectIoni width;

f- zan.Air intake is 10cated in -the nose.,Part of the body, the

f J co~ffidiefit" of thbadditiOnal lift which arises with engine, operatio-
:: ::at ,desig n.-powejr is,; .. .

where S id : the air. area.

121.3. .DraO of Bodies of Revolution

The- dragcoefficient of a ,body of :revolution for a,= 0 can be

iepresent* hs -tbe sum of three terms

where cp is the drag coefficient which depends on the distribution of

the normal pressure forces over the surface of the body;

Cx base Is the base drag coefficient;

Cf is the friction drag coefficient.

At subsonic speeds the coefficient cp is comparatively small and

is neglected. However at transonic and supersonic speeds the coeffici-

ent a I increases rapidly, since in this case it is determined pri-

marily by the system of compression shocks at the surface of the body

of revolution. In this case the quantitycx' is called the wave drag

coefficient and the formula for the drag coefficient takes the form

+~=ej c*jc, (21.25)

The friction drag coefficient of the body of revolution is defined

similarly to the friction drag coefficient of a wing. In this case,

Just as for the other coefficients, the friction drag coefficient is

FTD-HC-23-720-71 224



ri-ferred to the idsection ar~ea-%i

where S'Ne is, the surf ace area of' the 'bodY of revolution etdb h

ilo (the s6o tdlled "wetted"I area).;

* s a cefiietaccounting for tkie fineniess- ratio, of the
body of revolution;.

Is a coefficient accounting tor*,the com-pressita-liy of air;

*_ij. is the frtiction drag coefficient..of a fladt.,plate for,

In view of h ~c ta Re is very large for a J'ti61age (because

of the high flight. *ped: and- the large fuselage--length of mdd~mjn

transport and pa.ne airplanes), the bounir' l4yer can 'be consid-
ered turbulentz- Incrase of the fuseage, fineness ratio leads -to
-deci-ease of its relatl.ve thic~dle's, and in thiis case the fuselage

drag- differs: less and -less -fr6in. -the dxrag of flat plate, i.e.,, "With-.
increase of the fineness raio the coeffidient t decreasis, approach-

ing unity. A-cu3 te of nYersus body of revolutioni fineness- 'atio is
bh6wn in Figui'e 21.5..

The wa- e- drag coefficient c can be written as the sum of the

wave drag -coefficienit c xnoeof' the nose part of the body of revo-
lution and the wave drag coefficient c f of the aft part of the

body (for 6 = 0, c 0). Curves of c Bns= f(M.) for bodies

of rvouinwith parabolic nose are shown in Figure 21.6. The seg-

mnents of the curves in the range M., < 1.6 (dashed) are plotted on the
basis of~ experimental data; the segments in the range M. > 1.6
(continuous) are plotted on the basis of theoretical calculation.

Curves of .the, relation c B aft 0f(M..) for the aft part of the body

of revolution with parabplic generators are shown in Figure 21.7. The

curve segr.nts for M, > 1.6 are calculated Values; those for M. < 1.6
are appioximate.
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Lue ' - - -dr4 -q factor,--

~ vers~s fienesi ratio of 92 3 * A

cobdl-bdy, of zrev~otttion

412j-'U4,NConride'ing, the expression.
- - - 21.) fr bAde drag the base drag

coefficient can be found from the

I- E , Iformula

Figure-'2L-7.. Wave drag 2(21.27)'
doefficiett of parabolic
~boatt41i versus M4 -af =2) In the particular case in which

-~~~ dbase =Dmid- b aeda
coeff'icient e'quais the pressure coefficient.

Sometimes the ratio Pb~ie/Pw is used in place of fbase in (21.27).
'The conne~ction between these quantities is given by the relation

PAouPi PXO'sP. =[L1 2

-P"Mo .. AM2 (21.28)

With account for (21.28) the formula for c can be written as

)A 2 dxon N2
c~. 3 ~~(f~I k~.(D.I/(21.29)

The~ results of experimental data analysis have made it possible
to obtain the followinig approximate relation for the base drag
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coef-ficient for subsonic and transonic speeds

021'.30)

For supeisonic ,speeds the. base drag coefficient is found fromi

the f6iriiuias,

O.O85k(2--k)
i )(21.31)

,,o0o6 -c :.- (21.32)

where

k=-; S,-= ";
itsSU Silvia

Formula (21.31) corresponds to values k < 1; formula (21.32)

corresponds to k > 1.

REVIEW QUESTIONS

1. How does the lift force arise on a body of revolution (on

its nose, cylindrical, and aft parts)?

2. Write expressions for the lift, lift coefficient, and

derivative ca of a body of revolution.
y

3. How is base drag created? How is base drag determined?

4. On what factors do the pressure drag and friction drag of

bodies of revolution depend and how do they vary with change of the

flight speed?

PROBLEMS

1. The angle of attack of an airplane flying at H = 2000 m and

V = 900 km/hr is 0.07 rad. Find the fuselage lift force if we know
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that- the wing, incidence angle, (angle between the wing chord and the
fusela6ge lonigitudinali axis) is -Oi7i rad and-the fuselage has the

folov4ig gdoetric characteristics: fuselage length L -32 m, nose
l~ghZh 5 ,,8r length of cylindrical p3art 'I 16,m, diameter

6t cylindrical part A, k mj base diameter das= 1 m,,the genera-
trix of the noe and aft sections is. a straight line.

GO.xp-9gpO,C 6 3 rmd

d 1for the fus~lage is found from (21.22). Let us find the quantities
app&arIng ifi (L2l.2). We take C "' 0.17. Using (21.14), we have

n.;,. 0.25
To determine C. we find:y-nose

a) at H=2000 av 4=333.3 xauceic;

b) V=n25O .Isec; M-.=A± t0,752;
3.683.

Dow, 4

1-o.7522

e) ±=2, since lENA-L

From (21.22) we have

573

Then
OV2 1-2502

Y 1=c5 1s.., 7-f-=O,I 2 2 x4 2 ---- 3 6 2 0 0 N
24 2
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CHAPTER XXII

TAIL AND CONTROL SURFACE

AERODYNANIC -CHARACTERISTICS

§22.1 Tail Aerodynamic Characteristics

In order to provide motion stability and flight controllability,

flight vehicles are equipped with special surfaces which have the same
form as the wing and are termed the tail.

The tail, located at the aft or forward end of the fuselage,

usually includes stationary parts, fin and stabilizer, and movable
parts, elevator and rudder (Figure 22.1). The fin- and rudder consti-
tute the vertical tail, and the stabilizer and elevator constitute
the horizontal tail.

In most cases the horizontal tail of supersonic airplanes is

all-moving, i.e., without a stationary stabilizer.

The types of tails used are quite varied. Some of the most

typical horizontal tail shapes are shown in Figure 22.2. Swept and

triangular tails are used for high-speed airplanes. The aerodynamic
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characteristics of the swept and

triangular tils differ from the

characteristics of the unswept tail,

just as the aerodynamic character-

istics of wings of similar form

differ from one another.

Relatively small forces act

on the tail; however, because of the

Figure 22.1. Horizontal and long arm relative to the airplane
vertical tail; center-of-gravity these forces

- Stabilii*; 2 - ?elevator;
3 - fin;4 1 rudder. create moments which are capable

of balancing the overall moment

from all the other parts of the airplane: wing, fuselage, nacelles,

and so on.

Figure 22.2. Characteristic horizontal tail planforms:

1, 4, 5 - trapezoidal; 2 - elliptical; 3 - triangular;
-swept.

The lifting properties of the tail are determined by the lift

coefficient increment caused by change of the angle of attack or

magnitude of the control surface deflection

TD7 23dip
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SFS The lift and drag coefficients
of an, isolated. tail tested in

- : l" TsAGT wind tunneis (F 28%; 1=
3; 2; control surface area

- L Ais 40% of the overall tail area)

- are shown in Figure 22.3.

A We note that the control

-r. surface effectiveness decreases

4 0 -l ! ; :or=41 when it is deflected to large

- --Az angles (for 6c 0.6-0.7 rad the

lift does not increase because of
t, -A 1flow separation from the surface

of the tail). The control sur-
-tail profile faces of swept and triangular

Figure 22.3. Aerodynamic tails retain their effectiveness

characteristics of isolated better at high deflection angles
tail. in comparison with straight tails.

For linear Variation of the lift coefficient, the dependence

of c on the angle of attack a and on the control surface deflection
y

angle 6-c is expressed by the formula

c,= (22.1)

where the control surface effectiveness coefficient

AL
X=------- - " (22.2)

The quantities BCy /Da and BCy /36 are smaller for swept tails

than for straight tails. Experiments show that the quantity BCy /c
for the unswept tail depends very little on the tail profile and can

be expressed by the approximate formula

Ou 1,73S+---1 (22.3)
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The bntrol sriface effectiveness coefficient n for Subsonic
speeds can be found f o the formula

a M (22.4)

where St is the tail area;

Sc is the-control surface area.

The pregdhee on the control sm'a£face of cutouts and aerodynamic
balance proVibions (sDecia provisions used to reduce the forces on
the flight controls) has a considerable effect on the tail lift
coefficient cy, tending to reduce its value.

The coefficient decreases markedly at transonic speeds and in
the presence of local compression shocks. In this case the lift
coefficient changes very little with change of Sc . To increase the
control surface effectiveness at transonic speeds., the relative
thickness of the tail profiles can be 7."4duced (to increase Ncr) or the
area of the all-movable tail is increi~sed, which is more effective.

At supersonic speeds the control surface effectiveness coeffi-
cient is found from the formula

SP

S..

§22.2. Aileron Aerodynamic Characteristics

The ailerons are deflecting wing trailing edges, located at the
wing tips and used to provide transverse controllability of the air-
plane. The aileron chord usually amounts to 0.15-0.30 of the wing
chord. Ailerons of various types are shown in Figure 22.4.
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'The aerodyniaic coefficients
characterizing the ailerons are

a) d~,; -(22-5)

f . where MN are moments 'about the

b)x and'Y axePs;

jii cients;,

C) -0 the ilynamic .pressure;
2

iur2 .. nS is, the win -area.,Figure 22". 4-. Aflefr0ns: ....

a - conventional; b r below-
wing; c - above-wing; d - Curves of relations Tx f(s) and

fore-wing;, e - tip; f - plate m. = f() for atrapezoidai wingi ~(spoiler). ... ya
-piewith conventional ailerons are

shown in Figure 22.5. We see from

the curves that at normal flight angles of attack mx is nealy constant

and decreases sharply near the stAll angle of attack; my increases
gradually at the opert ional angles of attack.

§22.3. Control Surface Hinge Moments

and Aerodynamic Balancing

The magnitude of the pilot forces applied to the flight controls

(stick and pedals) depends on the control system and the magnitude

of the aerodynamic forces, which create moments about the rudder,

elevator and aileron hinges. The moment of the aerodynamic forces

about the control surface axis of rotation is termed the hinge moment

Mh (Figure 22.6).

The force on the flight control

P -- Af ,(22.6)

where Mh is the magnitude of the control surface hinge moment;

kh is the control system gear ratio.
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For the elevator the

- s- ad coefficient

-~ '---1(22.7)
where dSel is the elevator

,-e - aad gular displacement
4U~reA -(in-rad);

dx is the stick linear

displacement.

For airplanes with conven-

tional controls, the coefficient

kh has the following values;
elevator 1.5-2.0, rudder 3.5-5.5,

Figure 22.5. Curves of mx  f Oa, ailerons 0.5.

E) and my = f(6aa) for trape-

zoidal wing with conventional The hinge moment is -ound
aileron.

from the formula

.4 I=m. -1 1 SD (22.8)"
2

where mh is the dimensionless hinge moment coefficient;

S. and b c are, respectively, the area and MAC of the control

surface (aileron).

Here the dynamic pressure pV2/2 is measured at the contrel surface

location.

To find the magnitude of the hinge moment, we must know the

magnitude of the coefficient mh. Curves of the relation mh - f(6Sc)

for the elevator and rudder and of the relation mh = f(6a,a) for

the ailerons based on experimental data are shown in Figure 22.7.
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t -

- - I "-axis ofro 4ation-

Figure 22.6. Hinge moment on control surface
when stick is deflected.

I II I

4~LiL . -Sp rd a-i,.rd

a) b)

Figure 22.7. Curves of mh = f(6,,c) and

mh = f(Sact):

a - elevator and rudder; b - ailerons.

With increase of the flight speed and airplane size, there is an

increase of the hinge moments and therefore of the forces required

to control the airplane. One important technique for reducing the

magnitude of the forces is the use of aerodynamic balancing. The

principle involved in the action 6f the horn and overhanging aero-
dynamic balances is quite similar. They differ only in the location

of the portion of the surface which extends ahead of the control

surface axis of rotation.
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iii. of rotAtion Figure 22.8 shows the horn

bklan64, while Yigre 22.9 shows

an overhanging balance, which is

,more widely used than the horn

'balance on present-day airplanes.
When the cohtrol surface is

Figure 22.8. Horn -b&lance: deflected, an aerodynamic force

1- semihor balance; ariseson the balance and creates
2 - horn balance, a moment about the axis of rotation

which is opposite to the direction

.axis of rotation of the hinge moment and reduces
its magnitude.

In addition to the horn and
overhanging balances, in order to

Figure 22.9. Overhanging reduce the magnitude of the forces
balance. the flight controls use is

made of trim tabs , geared tabs,

and flying tabs, gbich are small control surfaces mounted near the

aft end of the main control surfaces.

The trim tab (Figure 22.10) is controlled manually or electri-

cally from the cockpit; it deflects in the direction opposite the

main control surface deflection. Deflection of the trim tab creates

a hinge moment whose magnitude depends on the deflection angle.

This moment reduces or may even balance the hinge moment of the

main control surface.

The geared tab (Figure 22.11), in contrast with the trim tab,

is not controlled from the cockpit. Its deflection is provided by a

rigid rod which links the tab with a fitting on the stabilizer, fin,

or wing. When the main control surface is deflected, the geared tab

is automatically deflected in the direction opposite that of the

main control surface, reducing the control hinge moment.

[ FTD-HC-23-720-71 236 -



rim tib>cotrol cnrl, main ccatrol surface

tcajji; surface tirimk tab -

control tod

Figure 22.10. Trim tab. Figure 22.11. Geared tab.

aifn controlkurface

geared tab The flying tab (Figure 22.12)

is also us'd at the present time

rod on many airplanes (particularly
-o rheavy airplanes). The flying tab

is connected by rigid.'linkage

Figure 22.12. Flying tab. with the flight control stick and

is designed to deflect the main

control surface. The control linkage is hinged to the main control

surface and does not transmit any forces to the latter. When the

stick is deflected, the flying tab deflects. The moment which it

creates leads to deflection of the main control surface. The main

control surface deflection angle is determined by the flying tab

deflection angle, i.e., by the stick deflection angle.

Review Questions

1. Write the formula expressing lift coefficient dependence

on angle of attack and control surface dcflecti.on angle.

2. Write the formula for determining the control surface

effectiveness coefficient for subsonic and superonic speeds.

3. Explain the purpose of the ailerons and write the formulas

for the aerodynamic coefficients characterizing the ailerons.

4. How does the flight control stick force depend on the

magnitude of the hinge moment? Write the formula expressing this

dependence.
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5. Expii1.1 pudOrpose and princPl~o praino tehr

h .Epante -i ose and OPerto of the trim -tab.,

i- T. s th- V1 oeation of a 10yi$ tab.

1.k t. tIi 6
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CHAPTER XXIII

AIRPLANE AERODYNAMIC CHARACTERISTICS

§23.1. Aerodynamic Interference

In addition to the wing and fuselage, the airstream flowing

around an airplane encounters the tail, engine pods, nacelles, antennas,

and other parts of the airplane. The wing creates the major share of

the airplane lift force. The other parts of the airplane, while

having little eft'vct on the magnitude of the lift force, increase the

airplane drag to a considerable degree and therefore are termed non-

lifting components.

It has been found that bodies positioned close to one another in

an airstream exert a mutual influence on the nature of the flow around

them. The result is change of the flow pattern and the shape of the

streamlines, vortical wake, and disturbances caused by each element

of the airplane separately, which leads to redistribution of the

pressure forces. As a result of the mutual influence of the airplane

parts or so-called interference, the sum of the drags of the wing,

fuselage, and other parts taken individually (isolated) is not equal

to the total drag of the airplane. This conclusion is valid for all

aerodynamic forces and moments.
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To deteTine-the aerodynamic chiacteristics of an airplane, we

,usUsolv- -the complex problem 6ft-acc6unting ror -the mutual influence

(hter.~erefc) qf the airplane parts." Interference may be positive,

reducing the drag.-and increa ing the ae~rodynamic efficiency, or

negtiv;. .increasing the drag and- reducing the aerodynamic efficiency

of 'the airplane.

At- ubsonic-speeds the airplane is subjected to additional

resistance- owing primarily to fuselage influence on the circulation
distribution along the wing span, which in turn affects wing induced

drag.'Moreove, the presence of nacelles and also various cutouts

.and openings in the wing disrupt the circulation distribution over the

viing and create additional drag.

The fuselage and wing meet as two curvilinear surfaces and form

a V-shaped diverging channel (diffuser), in which the flow expands

far faster than when flowirg around an isolated wing. The intense

expansion of the air flow leads to accelerated increase of the

boundary layer thickness 'and premature boundary layer separation in

the regions where the wing joins the fuselage or nacelle (Figure 23.1),

which causes dpterioration of the airplane aerodynamic characteristics,

.ie., drag increases and lift decreases. Figure 23.2 shows the influ-

ence of wing-fuselage relativ6 positioning on the interference drag,

which is given in percent of the overall drag of these components.

The greatest diffusor effect is obtained on airplanes with wings

located at the bottom of the fuselage (low-wing configuration), par-

ticularly when the fuselage section is circular. The diffusor effect

is less onrmidwing airplanes. "Fillets" are usually used to reduce

the harmful effect of interference in the areas where the wing and

fuselage join (Figure 23.3).

The interference between the wing and fuselage and between the

wing and engine nacelles becomes more unfavorable at transonic flight

speeds because of air co-mpressibility. As the flight speed approaches
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Spabou tion of b da r in- aFir .

- - - le n dfuserg uion . onitreec rg- o

:- , ,} ~. _ frC .1A

aa -

Figure 23.1. Increase ofon the win i

boundary layer thickness and Figure 23.2. Effect of relative
Fpre2matureflow separation At location of wing and fuslage
wing-fuselage junction. on interference drag: 1 for

" T efore, t a crin a 2-

the speed of sound, the local veloc-

ities on the fuselage, nacelles, and,

most of all, on the wing increase
Stre'a Fillet Stream near the thickest parts of these

filament bodies (at the midsections and at
Figure 23.3. Diffuser effect locat',ions where surfaces join).
at wing-fuselage junction. Therefore, the airplane critical Mach

number Macr is lower than the critical

Mach numbers of the wing, fuselage,

- nacelles, and so on taken separately,

i.e., shock stall begins earlier on

the airplane. With increase ofM

flow separation starts earlier at the

~ wing-fuselage juncture, and after
appearance of compression shocks on

b) the wing there may be earlier and

Figure 23.4l. Ill.ustration of stronger shock stalling, associated
"area rule." with flow separation.

In the transonic speed range the airplane drag approaches the

drag of a body of revolution along whose length the cross section

~241
FTD-HC-23-720-71

I,



areiiear equa1 to thecOrreisponding overal areas of the airplane
crosssedtions. Therefore,j to reduce negative -interference for N > N

* cr
an attempt iS uade :to-avoid -coincidence of the maxil thicknesses

o and; _ 0o4ities of individuai components of the airplane. In this

ituAtfon a-midw#ingonfgoguration is more favorable, and it is

recomended that, the engine nacelles be located ahead of or behind the7 inig .on special pylons. These measures to reduce airplane drag In the

transon!C regidii speed range are taken with account for the "area rule."

:Figure 23-i4 shows -a plan view of an airplane and several cross
sections, aqwell as a body of revolution with equivalent areas of the

corresponding sectiohs. In the case shown the body of revolution is
not well streamlined. In accordance with the area rule, for reduction
of the wave drag it is necessary that the overall cross section areas
of the airplane vary along its length as for a body of revolution of

minimal drag, or at least smoothly. Therefore it is obvious that the

fuselageA'ust have smaller cross section area in the wing region, i.e.,

it must have a "waist." Figure 23.5 shows the effect of the "area

rule" for a flight vehicle.

To analyze the influence of wing-fuselage interference on the lift

force, we shall examine the flow around a fuselage with a thin wing

attached to the fuselage (Figure 23.6). The stream approaching the

fuselage is deflected downward below the-fuselage and upward along the

sides-. Consequently, the fuselage causes an .upwash, increasing the

wing angle of attack a and lift force. This leads to increase of the

pressure below the wing and increase of the suction above the wing.

This favorable effect of fuselage influence occurs at supersonic

flight speeds. This effect is less marked at subsonic speeds.

There is also a reverse influence of the wing on the fuselage.

If the wing creates a lift force, there is a low-pressure region above

the wing and a high-pressure region below the wing, which extend cor-

respondingly to the upper and lower surfaces of the fuselage. There-

fore, even if the velocity vector is directed parallel to the fuselage
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Figure 23.5. Effect of area rule Figure 23.6. Illustratingapplication: 1 - fuselage alone; effect of wng-fuselage mutual

2 - cylindrical fuselage plus influence on pressure distri-
wing; 3 - fuselage plus wing bution.
with use of "area rule".

axis, alift force will develop on the fuselage because of the

pressure difference.

§23.2. Airplane Lift Force

For subsonic airplanes the influence of interference on the

magnitude of the lift force of the various parts of the airplane is

such that the lift force created by the fuselage and other parts of

the airplane is practically equal to the magnitude by which the wing

lift is reduced because of the wing area occupied by the fuselage,

engine nacelles, and so on. Therefore, in calculations we can assume

that

Yc.A= YUP
(23.1)
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and

We note that When using (23.1) a fictitious part of the wing area

(within. the fuselage) is -included in the lifting surface area. For

supersonid speeds, this assumption may lead to significant errors.

Assuming that the wing, fuselage, and tail make the major

contribution to the lift force at supersonic speeds, we first deter-
mine the lift of the wing-fuselage combination and then add the tail

lift. Since 4ing-fuselage interference affects the mutual increase

of their lift, we can write

We ascribe the wing lift increase AYwand the fuselage lift increase

AYf entirely to the wing, i.e., we write

where k > 1 is the interference coefficient.

In order to account separately for the influence of angle of

attack a and wing incidence angle * (this may be done if the angles a
and * are small), we write the expression for the lift of the wing-
fuselage combination in the form

(23.2)

where Y # is the lift of the wing-fuselage combination for a - 0 and

* 0

Ya is the lift of the wing-fuselage combination for the angle

of attack a # 0 and * 0.

Hereafter we shall measure the angle of attack not from the wing
chord plane, as we have done previously, but rather from the fuselage

axis.

FTD-HC-23-720-71 244



The lift owing to angle of attack

(23.3)

where k. is the interference coefficient accounting for the lift

increase of the wing and fuselage for # = 0, a 0 0, (Figure

23.7).

For a = 0, AYw = 0 and the lift on the wing owing to the incidence

angle * only is

(23.4)

where k is the interference coefficient accounting for the mutual

influence of the fuselage and wing for a = 0 and * # 0 (see
Figure 23.7)

Now, substituting into (23.2) the
values of Ya and Y from (23.3) and

- -- (23.4), we obtain

3'/, Y x,=-Y+,.k.+Ymk,. (23.5)

Ao The wings of supersonic air-

planes are usually assembled from

symmetric profiles and the fuselage

is nearly a body of revolition;

- therefore we can write the relations
' u,_ =C;

4 0 With account for these formulas for
o 4, 48 *the coefficients, using (23.5) we

Figure 23.7. Curves for obtain the expression for the lift
determining interference coefficient of the wing-fuselage
coefficients k and kc

combination
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• f (23.6)

where w is the area of the lifting part of the wing.

Considering the horizontal tail, we obtain

C,. _ _ S + e,.. (23.7)

The coefficient c is found Just as the coefficients of the othery h
components were found, except that here the angle of attack a is

reduced by t)he magnitude of the downwash angle.

§23.3. Airplane Drag

The total airplane drag is found as the sum of the drags of its

parts, with the influence of wing-fuselage interference taken into

account in determiniing the wing drag

- 4- 9 (23.8)

where Sw.f is the wing area occupied by the fuselage;

kint is the interference coefficient.

The larger the portion of the wing occupied by the fuselage, the
less wing surface is exposed to the stream, and therefore the total
airplane drag is reduced. As for the negative effects associated with
the mutual influence of the wing and fuselage, they are taken into
account in (23.8) by the interference coefficient. For a low-wing

configuration kint = 0.25-0.6, for the mid-wing kint = 0.85, and for
the high-wing arrangement it is equal to one.

If the wing, fuselage, engine nacelles, vertical tail, and

horizontal tail are exposed to the flow, the airplane drag can be
written in the form

Xo2"=X. +x+rX..+x..+xf.Z
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After transfomati6n we obtain

S J1

o~,~,~, f~ Sjns.ra 4frx.

or 
8  

'S

c,= *S (23.9)

Here the ratios qht/q. and so on of the dynamic heads account for the

flow deceleration ahead of the installed airplane components.

Usually the following notation is used to obtain a simpler form

of the computational relations

k,.= .'-; .- etc.

where kht, kvt, and so on are dimensionless velocity coefficients.

The magnitude of the velocity coefficient equals one if the

undisturbed stream approaches the given airplane component; the co-

efficient is less than one if the stream is decelerated ahead of the

various airplane components and, finally, it is greater than one if

the airplane component is located, for example, in the airplane pro-

peller slipstream. The values of these coefficients are determined

experimentally.

The calculation is usually summarized in a table - the drag

summary. If all the flight regimes are performed with M. < Mcr, the

magnitude of c x0 is nearly independent of M.. For transonic and

supersonic airplanes the quantity Cxo must be calculated for the

entire range of M .
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OF

Figure 23.8. Cturve for deter- Figure 23.9. Supersonic air-
minihg additional jeparation plane polars for different d 1a.
drag.-

The airplane induced drag at subsonic speeds is found from the

formula

e e . (23.10)

In this formula we have used, in place of the wing geometric aspect
ratio, the so-called effective aspect ratio Aeff, which accounts for
interference between the airplane components. The value of Aeff is
found from the empirical relation

(23.11)

where S is the wing area occupied by the fuselage, engine nacelles,

landing gear, and so on.

At supersonic speeds, when the suction forces are small, it is

more convenient to find the induced drag coefficient from the formula

= (23.1.2)

The quantity co can be calculated by differentiating (23.7)

de HW2* + s; (23.13)
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The total airplane drag coefficient is found from the 
relation

cs_€ +€ + (23.14) "

The quantity Aci accounts for the appearance 
and development of

the phenomena induced by interference as the 
wing lift force increases

-(Figure 23.8)4 A typical high-speedairplane polar is shown 
in Figure

23.9.

REVIEW QUESTIONS

1. What is the essence of aerodynamic inteeference 
and its

effect on drag?

2. Write the formula for the magnitude of the upwash 
angle

induced on the wing by the fuselage and analyze 
this expression.

3. Compare airplane lift with wing lift 
and give an analysis.

PROBLEMS

1. Find the wave deag coefficient of a subsonic 
airplane if

X,4--- 8,4 k,. =0,8;

CZO.(.,p 0,008; ka.o =0,92;

cX 0, 076; k. 0,5;

A-..=-0,0096; S= 140 .2;

c -,. ,0092; S.,,.*=9,6 2;

0:041; S,.=27,8 2;
C.., M ,4x S..;= 17 .42;

The wing area occupied by the fuselage amounts 
to 20% of the entire

wing area.

Solution. According to (23.14)

CAC,+ 2 ,4 ,
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It folowt tfru -(23-.8), that

-' e.=0,0092+ .. w-.-.-

140

=0,007+ 0.3O.1+.14O. 0,0072+00081 =0,015&.

According to (23.10)

-00243.

After determining

==0.571,

we use Figure 23.8 to find the value of h

hctCzO;O,015.

Thus the total drag coefficient

C*~CAx+C,+AC*00153+00243+ 0,0015=0,041.
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CHAPTER XXIV

.AERODYNAMICS OF :FLIGHT AT HYPERSONIC SPEEDS

AND HIGH ALTITUDES

§24'.I. C oepts, of Hypers*on" 'e Floy and; Rarefied Gas

'erdynahi'cs" "(Hyper-" and SUp'er-a'ero'dynamics)

Hypersonic flow theory deals with the solution of several
important scientific and practical problems in aviation and rocketry
and is in the process of intensive development at the present time.
This theory includes, specifically, questions of the determination of

the aerodynamic characteristics of guided missiles and other flight

vehicles which are of interest in connection with orbital flight.

Therefore, along with the study of the aerodynamics of flight at

conventional supersonic speeds, exceeding by a few times the speed of

sound, the need arises to study the aerodynamics of flows with high

supersonic (hypersonic - from the Greek word "hyper", meaning

"extremely" or "above") speeds - speeds several times the speed of

sound (M. = 5 - 10 or more). At these speeds features characteristic

of hypersonic flow show up: first, the aerodynamic characteristics

associated with high Mach numters and, second, the physical or

chemical characteristics associated with high flow energy.
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In certalh cases- the aerodynamic effects, lead to simplification

of the. -olution of the aerodynamic problems associated with the motion

'of tlight vehicles at high supersonic speeds;. in other cases -they lead

'to cbn~iderable complication. The linearizatin &f the eqUations Of

tsotion, which is a very effective method in studying conventional
. °UPersOaic fios, is not applicable for hypersonic flow. J

The physical or chemical effects in hypersonic flows are asso-

ciated -with -the formation of high;-temperature regions. The latter

ais'3 when the gas ftriam passes through strong compression shocks,

in which the kinetic energy of the directed motion is transfrmed into

'thermal energy.

It is well-known that air at normal temperature consists of

approximately 78% nitrogen, 2i% oxygen, 1% argon, and other gases.

When heated, air can reach temperatures at which the vibrations of

the nitrogen and oxygen molecular atoms become significant. At still

higher temrerature C' 25000 K) and at moderate pressures, dissociatiofi
of the oxygen-molecules begins. At temperatures above 40000 K part
of the nitrogen molecules dissociates; at temperatures above 70000 K

partial ionization of the nitrogen and oxygen atoms is observed; at

still higher temperatures ionization of the nitrogen molecules may

begin. At the same time the reverse reaction takes place - recombi-

nation, as a result of which oxygen and nitrogen molecules are formed.

At these temperatures the specific heats are no longer constant and

independent of the temperature, and we can no longer use the results

obtained for constant ratio of the specific heats at constant pressure

and volume. In-this co:,nection, the need arises to study the proper-

ties of air flows under such conditions.

So far we ,have considered air to be a continuous medium, since

this assumption did not introduce noticeable error into the studies.

A quite different picture is observed when the gas is highly

rarefied. In this case, the gas cannot be considered a continuous
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medium, since Its density is so small that the molecules rarely inter-

act with one another. For example, the density of air at an altitude

J of 60 km is 103 tibies less than at sea level and at an altitude of

100 km it is 106 times less. Therefore, during flight in the upper

layers of the atmosphere we must consider its discrete molecular
structure. Here the gas can be considered an assemblage of molecules
moving in all possible directions, constantly colliding with one

another and with the surface of the immersed body.

Along with the aerodynamics of hypersonic velocities, which
examines air as a continuum, a significant role is also played by
rarefied gas aerodynamics - superarodynam4 :cs.

Special flight vehicles have been designed to carry out studies

at high altitudes and speeds, and their characteristics are presented

in Table 24.1. We see from the table that considerable aerodynamic

heating is unavoidable at hypersonic speeds. The flight speed is

determined not only on the basis of creating the required lift force

but also on the basis of permissible flight vehicle kinetic heating.

TABLE 24.1

Alti- Mach Trajectory Heat flux Heating
tude number incli- from aero- duration,

Vehicle type km nation,rad dynamic sec
heating,

kW/m2

Ballistic rocket

(range 300 km) 60 15 0.665 8600
ICBM

(range 10,000 km) 60 23 0.4 32 000 15

Hypersonic glider 36 5-10 0 54 1800-7200

Vehicle descending
from satellite orbit 75 20 0-0.175 1000-10,750 120-300

Experimental vehicle 75 10-25 0-0.175 1000-10,750 120-180
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k-- Si.2.! Aerodynaidc ChraterittIc& Of Bodies
in Hypersonic" FIow

I: -he case of hypefsonic flow around bodies, we must take into

accddt the most significant differences between this flow and super-

sonic -flow around-the bodies. For example, in the 'case of hypersonic

-:fl,w around bodies the bow shock wave approaches very close to-the

.b'dy surface. On the other hand, with increase of M1, there is an

'increase of the boundary layer thickness (see Chapter Xli§, §I3.3).

The interaction of the 6hock wave with the boundary layer takes.place

in the presenc4 of high temperatureswhich leads to considerable in-

crease of tie friction coefficient.

For the approximate calculation of the pressure distribution

for hypersonic flow around bodies, i se is made of the Newton hypothesis,

based on the impact theory of hydrodynamic drag. According to this

hypothesisi the approaching stream particles remain undisturbed until

they collcie with the surface of the body'. Upon impact the particles

lose the normal component of their momentum, after which they travel

tangent to the surface without further change of velocity. The lost

normal momentum component create6 at. impulse of the pressure force on

the body, defined by the equality

p-p.=Q.V Sin2 0, (241.1)

where 0 is the angle between the tangent to a surface element and

the flow direction.

In fact, through unit area taken on a plane parallel to the

inclined face (Figure 24.1) there passes per unit time the air mass

p.V.sin, having the normal velocity component VsinO; therefore in

the direction normal to the inclined surface, the momentum decreases

by the magnitude pV! sinO.

.ft.-is easy to obtain from (24.1) the expression for the pressure

coeff.,:6ient
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Figure 24.1. Illustration for determining
flow parameters behind oblique compression
shock a; hypersonic speed.

P= -- =2s, (214.2)

and for thin bodies, when the angle e is small

p=2P. (24.2')

Formula (24.2) defines the pressure on the surface of the body

sufficiently exactly if the body curvature and the disturbed flow

regions are small in the flow direction. The use of this formula for

hypersonic flow around bodies assumes that the bow wave coincides

with the surface of the body. This is not exactly so, but for large

freestream Mach numbers it yields an acceptable error.

We note that calculation using the Newton formula describes quite

exactly the flow near a body in the limiting case when k = -1 and

Mw-poo. For this case the pressure coefficient at the stagnation

point max = 2. Experiment shows that for k = 1.33 and M = 15,

.... 1.75.-"A rmax

Considering that the shock surface does not coincide with the

body, it is more correct to use the modified Newton formula

P~maxSIQ~t(241 3)
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where Pmat is the pressure coefficient at the stagnation point.

Formula (24.1) can be. transfoiped to

Then, considering that and -. , we obtain the expression

for finding the pressure on the surface of the body

p=p.(1+AMA sPo). (24.4)

Accordifig to Newtonion theory, the pressure on an elementary body

area dependA 6nly on the attitude of this elementary area with respect

to the approaching flow and is independent of the shape of the remain-

der of the body. Therefore, body drag is determined only by the shape

of the forebody, since this is the only part which collides with the

approaching flow particles. The pressure on the aft region, which

does not collide with the approaching flow particles, must be equal

to zero.

For hypersonic flow past a cone with apex angle 2 $ at the

angle of attack a < $,, using the pressure distribution pattern, we
obtain the expressions for the normal and axial component coefficients

in the form
o €.== cos2P'If na;

cR=2sP.M+-dslna(- 3si. PE). (24.5)

As the angle of attack a - 0 we obtain from (24.5) the formula for

the cone wave drag coefficient

R---R,,=2sffl'P,. (24.6)

To obtain the overall cone drag coefficient, it is obviously necessary

to combine the wave drag and friction drag coefficients.
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§24.3. Oblique Compressicn Shock at

Hypersonic Speeds

To find the gas parameters behind an oblique compression shock,

we examine hypersonic flow past a concave corner with angle less than
ir.

As N1 . it follows from (10.34') that

k-l

For large MI the difference B - 8 is small (see Figure 24.1), parti-

cularly for small 0, and therefore, replacing tg(p-O)by p-0 in

(10.34') we obtain

2 k-zi1 2 .

j close to the body surface, for small flow turning angles. O we can

i--

assume that sinP-, and coso-1. Then (214.7) takes the form

2 + (k - I)M .2
(k-e I + 1) AI1 2

or, after transformations,

(M -- (M,)(M)- I =0. ( 24.8)2

The quantities M10 and M are called the hypersonic- slmilarity

parameters and are denoted respectively by

K.= mie;

K,=M,P.

With account for these notations (24.8) can be written as
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-"'X,- -. (24.9)

Solving this quadratic equation and considering that the negative

sign is "eaingless, since K its-a positive quantity, we obtain

4i + + r Y(24.10)

or, after transformations

- K0  4 41(214.11)

For some fixed (small) angle e and M, which increases without
bound Ka-ao. Then we obtain from (24.11)

• 2 (24.12)

-Setting siflp - for small values of 0 and assuming that M,p=K,

we obtain from (10.30)

tk+-1i k+ (24.13)

We find the pressure coefficient

-- 1 (PI

or, with account for (5.19)

Substituting herein the value of p/p1 from (24.13), we obtain

4 0-1 (24.14)

Dividing both sides of (24.14) oy 02 and considering that M,0-K,

we have
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k+1 (214.15)

It follows from (24.9) that

then

Substituting into this expression the value of from (24.11), we

obtain

k~ +1 I~ '
2 2- 11+L 1 (24.16)

From this equation we have as M,-ioo(K.-oo)

p=(k+I'. (24.17)

Hence for:

k=1 2F
k=1 -,2 p=2,262;

k=1.4 2Wk~I,4 p=2,4O2 .

Consequently, we can conclude that in hypersonic flow the pres-

sure coefficient behind a compression shock for small turning angles

6 is proportional. to the square of e. We can find similarly the other

gas parameters behind the oblique compression shock for hypersonic

velocities.

§24.4. Profile* Aerodynamic' Characteristics

at- Hypersonplc Speeds

In accordance with hypersonic flow theory there are two similarity

parameters for affinely similar bodies
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Kt -M. and k.=M* (24.A8)
Kli

ihere C is the profile relative thickness;

is the angle of attack.

The driterion K1 may be written in the form

or

K,=K, -,
(24.19)

where a/F is the so-called corected" Anrgle 'of attack. Expression

(24.19) establishes the connection between the similarity criteria.

For k.y-&rsonic flow past a flat plate at the angle of attack a
the lift and drag coefficients are found from the formulas

e,-f(K.)&2,

(24.20)

1where

KC. 2 .J-- Kf (K.)= 2-- I - ( I• .)411

With increase of the parameter M.a the coefficients Cy and cx w

increase, and in the limiting case when M.a-oo we obtain

cu,=(k+ 1,'. (24.21)

We see from these formulas that as Ma-0oo the coefficient c is pro-2 Y3
portional to a and the coefficient cx w is proportional to a

Using the hypersonic similarity criteria, we can write for an

arbitrary pi'ofile
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ej=,aF 2(K; .
' C,

The -or'of'the functions -F-,, 2 F3 depends on the profile shape.

The polars for triangular and rhombic profiles, calculate4 using

hypersoniic gat flow theory (the polars are-plotted in the similarity

parameters c/c 2 and c/c3), are shown in Figure 24.2. _ If we. denote
the limiting values of these coefficients as M.-0o by Cyx CW m-9

we -can -write
e,=w.-e, )

140
C.=CM-+AC. (24.23)

where Acy, A,( and Acm are corrections which depend on M.

If we assume that each term of the right side of (214.23) has a

factor which depends on the angle of attack, then these expressions

by analogy with (24.22) can be written as

e ,=x. (k+ 1)?i4A cIe.=7.(k+1)c2+ ," " 2424
(214.214)

The quantities c y, ACp, ex W-' Ac ' WMO andAc. are found from curves.

Curves showing the variation of x and AE with a/F for various
profile shapes are shown in Figures 24.3 and 24.4. Using the curves

and Formulas (24.24), we can find the aerodynamic coefficients c

CX w, cm for given F, a, Ml,. We see from analysis of these figures
that c, and cxw increase rapidly with increase of a/F for all the

y
profiles.
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:.11 Call
.4.M

N I c . iFigure 24.3. Coefficient cx w.
vesu corce nl fatc__I--
a/6 for different profiles.

Figure 24.2. Polars of triangular In conclusion we note that

and rhombic profiles and flat the aerodynamic coefficients of
plate calculated using hyper- the profile and wing are practi-
sonic gas flow theory.

cally identical in hypersonic

flow.

1§24.5. Rarefied Gas Aerodynamics

| We noted previously that

-- under rarefied gas conditions we

-"o r//- must take account of its molecular

structure, which may be expressed

12O -_ by the molecular free path from

..}F 7one collision to another.

I Since the individual molecule

chaotic motion velocities may vary
Figure 21414. Coefficient A x w over wide ranges, the free path

versus corrected angle of attack of different molecules is not the
for different profiles. same. Therefore, we introduce

the concept of the mean free path,

which is the basic parameter for
rarefied gas flow.
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Let us examine the interaction

of two air layers in a boundary

layer which are separated by a

Vg. distance equal to the mean free
2 t,..i -path length Z (Figure 24.5).

YX,

If the average velocity

component along the x axis of the

air molecules of layer 1 is de-

Figure 24.5. Illustration used to noted by V , the average velocity
derive formula for finding mole- component of the molecules of

cular mean free path.

layer 2 will be V;+=&I.

As a result of chaotic motion the molecules will displace from
layer 1 into layer 2 and vice versa. If we assume that the displace-
ment takes place from layer 1 into layer 2, then the mass m of mole-

cules flowing through unit area of layer 1 during unit time will be

proportional to the average chaotic motion velocity and the gas

density. Denoting the coefficient of proportionality by kI and the

average chaotic motion velocity of the molecules by V, we obtain for

the mass m

m=klQV.

The momentum change is

0va or k1QV Yvt (a)

The impulse of the friction force during unit time will be

determined using the Newton formula

aV,
(b)

Equating (a) and (b) and considering that v=-L, we obtain the

* molecular mean free path:

l-.: kV
k1V
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According to the kinetic theory of gases, the coefficient of propor-

tionality ki = 0.499.

The velocity V is found from the formula of kinetic theory of

gases

V=4
V - (24.25)

where, k = /Cv;

a is the speed of sound.

With adcunt for this formula the mean free path is

I= ,, 5 1M--1- . (24.26)

We note that the molecular mean free path changes very signifi- 4 -

cantly with increase of the altitude: at -en level the mean free

path is millionths of a centimeter. ani. altitude of 120 km it is
several meters, and at an altitude of P0 kr,, I- is hundreds of meters.

If the molecular mean free path is divided by the characteristic

flow dimension (for example, the body laneh I.), we obtain the so-

called Knudsen number

Kn=-.

I'

Substituting herein t from (24.26) and zonsidcring that the Reynolds

number Re = VL/v, we obtain

KU= ,25Vr . (24.27)

To characterize the degree of rarefaction of the medium in ne

boundary layer, we use the ratio of the molecular mean free pat, to

the boundary layer thickness 6:
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With account for this, Expression (24.27) takes the form

Knu ,q-,I (24.28)
Re *

The boundary layer thickness depends on the flow nature and Re;
consequently Kn6 will depend on M and Re. Since the following
relation holds for large Re in the laminar boundary layer

FS !

the Knudsen number is

e (214.29)

For very small va)ues of Re (approximately < 100) we can write

in place of (24.29)

R- (24.30)Re

It follows from (24.27), (24.29), 24.30) that the degree of
Mrarefaction of the medium is characterized by the ratio M/Re or-

which is called the rarefaction parameter.

Depending on Kn, the gas flow can be divided into three basic
regions: continuum flow, slip flow, and free molecular flow.

1. For <0,01 or M/I e < 0.01 the molecular mean free path is

less than 1% of the boundary layer thickness. In this case we can
consider the flow to be continuous i.e., we have the region of

conventional gasdynamics (Figure 24.6).

2. For 001<-L< the molecular mean f-ee path is small in
comparison with the body dimension, but is comparable with the thick-

ness S. In this case we have slip flow. Here the flow velocity at

the wall is not equal to zero.
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3. For ->l the molecular mean

a free path is greater than or commensurate
in.-magnitude with the boundary layer

thickness 6. In this case we have the

free molecular flow region. In this
Z region the elementary particles do not

z interact with one anoA'her, and there is
essentially no boundary layer. The

interaction force between the flow and

Val vthe body is the overall impulse of the
air particle impacts on the surface of

Figure.24.6 Ve,!ocity distri- the body. The kinetic theory of gases
butions alng normal to
surface: examines this question in detail.

1 - continuum flow;
2 -slip flow;
3 - free molecular flow.

REVIEW QUESTIONS

1. What is the difference between hypersonic flow and conven-

tional supersonic flows.

2. Define the pressure coefficient for hypersonic flows, speci-

fically at the stagnation point.

3. Find the magnitude of the wave drag coefficient for hyper-

sonic flow past a cone with angle 0. = 0.175 rad.

4. Determine the gas parameters behind an oblique compression

shock.

5. Write and analyze the formulas for the aerodynamic

coefficients.

6. List the salient features of rarefied gas aerodynamics.

Characterize the mean free path as a gas flow parameter.
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7. Give the definition of the Knudsen nuifoer and write its
formula. Explain how the nature of the flow depends on the Knudsen

number.

PROBLEMS

1. Find the wave drag of the rocket of Figure 24.7 at the

altitude H using the Newtonian representation for gas particle inter-

action, and compare Vie drag for the same rocket nosecone fineness
ratio if the nosecone shape is specified respectively by the equations

The freestream direction coincides
with the rocket axis. The free-

M stream velocity is such that M. >> .
e-- i Ythe mass density at the altitude

H is p. The nosecone length is

Xnose 5m.

Solution. We see from

Figure 24.7. Illustration for Figure 24.7 that the mass flux to
Problem No. I the segment 2rydy is

diiI=2 V. ydy= 2,rV..yy'dx,

where

dx

The drag on the segment 2.tydy resulting from gas particle

momentum c'-ange is

dX=2ntCV2 sin20y , d.X.
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Integrating this expression, we obtain the rocket drag

X=2xjQVt -sId 2 Sgg'dx.

Since sihS=---- . then

X=2*QVt S I~edx.S

We find correspondingly

16104 dz
X 2x ,vj S 1.0 _

_ eszo"4 O . ;!

dxmlX2-xe2.-".". dX

=4-O1" Vx'.!j 0 InO1

Hence we have

- - 16-10-4
X2 1,04.4.1O-41 101 0,834.

2. Find how much the pressure ratio across the compression

shock and the shock halfangle change for symmetric flow past a wedge

of infinite length and halfangle e = 0.175 rad when the Mach number

changes from M,, = 10 to 1, = 20.

Answer: Ap-0,0392 rad, A=I,05 .
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CHAPTER XXV

PROPELLERS

§25.1. Principles of Air Propeller Operation,

Their Geometric and Kinematic Characteristics

The thrust required for flight on airplanes with an airscrew

propulsor is created by accelerating a mass of air in the aft

direction by means of the propeller. The greater the speed and

mass of the air accelerated in the aft direction, i.e., the greater

the momentum, the larger is the thrust force. On the propeller

driven airplane the thrust is created by the propeller; it is the

propulsor. The propeller transforms the engine power into the work

which is performed in moving the airplane.

A propeller can be used for purposes other than creating thrust,

i.e., is the airplane propulsor: with the aid of a propeller the

mechanical energy of the engine can be transformc" into kinetic

energy of moving air (operation in the fan regime); it is also

possible to transform the energy of the moving air into energy of the

rotating propeller (operation in the windmill regime).
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In aerodynamics courses the propeller is exas,nea .nly as a

creator of thrust, i.e., as a screw propeller which transforms

engine work into thrust work. The power on the propeller shaft,

defined by the product M0 (M is torque; I) is angular velocity), is

transformed into the useful power PV. (P is thrust, V, is airplane

flight velocity).

The propeller effectiveness is evaluated by the efficiency

Pv-
M

Modern propellers have high efficiency, reaching 83-86% at subcritical

flight speeds. For fixed engine power N, the thrust P = qN/V

decreases with increase of the flight speed to the degree that

airplanes with airscrew propulsors become inferior in economy to

airplanes with turbojet engines.

The basic working element of the air propeller is the blade.

Propeller blade shapes can be quite varied - from rectangular to

scimitar. The profiles from which the blade is made up vary from

the blade root to its tip. The propeller blade is characterized by

several geometric dimensions, which are termed the geometric charac-

teristics.

The Dropeller diameter D (2R) is the diameter of the circle

described by the blade tips as it rotates. Other conditions being

the same, the magnitude of the propeller diameter has a marked

influence on the efficiency and is determined by aerodynamic calcu-

lation. In selecting the propellpr diameter, account is taken of

geometric considerations since, for example, the propeller dimensions

affect landing gear height. The diameter must be considered in the

layout of multiengine airplanes in order to avoid deterioration of

the operating conditions of neighboring propellers.

The solidttv o is the ratio of the area of the blade projections

on the propeller plane of rotation to the area swept by the blades

as the propeller rotates.
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The blade width b is the blade section chord length. The

chord varies along the blade length (Figure 25.1). For subsonic

propellers the maximal width is usually located at about half the

blade length.

I I

Figure 25.1. Geometric and kinematic characteristics
of blade profile.

The blade thickness c is the maximal thickness of the blade

profile at a given section. The blade thickness decreases from the

blade root toward its tip, reaching 4 - 7% of the chord at the tip.

The blade thickness at the middle sections amounts to 10 - 16% and

at the roots sections is 25 - 30%.

The blade section incidence angl- 4 is the angle formed ty the

section chord with the propeller plare of rotation (Figure 25.2).

As the propeller rotates, air flows around each blade section

and, Just as in the case of the airplane wing, a ]ift force is

developed. The blade operating condtions are more complex than

those of the wing, since both translational and rotational motions

are performed simultaneously. The section angle of attack a is

the angle between the profile chord and the resultant velocity W

(see Figure 25.1), in the first approximation equal to the vector

sum of the axial velocity (flight velocity V) and the linear

rotational velocity U. The linear rotational velocity increases

with increase of the distance from the axis of rotation; therefore
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the flow conditions around the blade section vary along the blade.

The angle of attack increases with increase of the linear rotational

velocity (see Figure 25.1). Therefore, for constant angular

velocity the section angle of attack will be larger, the farther

the section is located from the axis of rotation.

Since the blade section angle of attack depends on the distance
from the axis of rotation, to obtain the same operating conditions

of all sections the blade must be made with lengthwise twist, so
'C that the blade section angles of attack will be approximately the

same at any distance from the axis of rotation.

The blade twist is the variation of the section incidence angle

along the blade length. Usually this variation is measured relative

to the incidence angle of a reference section located at the distance

0.75 R from the axis of rotation. Therefore the blade twist is
characterized by the difference 0 - where * is the incidence

angle of the section in question, located at the distance r from the

axis of rotation.

Under operational conditions the reference section is frequentl.v

located at some distance other than 0.75 R, which however is quite

definite for each propeller type. The reference section is denoted

by a brightly painted line.

For constant linear velocity of rotation, the angle of attack

will obviously depend on the axial velocity. With increase of the

axial velocity the angle of attack decreases and may become negative

(Figure 25.2). A negative angle of attack can also be obtained

as a result of decrease of the blade incidence angle *.

In order to ensure optimal operating conditions in all flight

regimes, modern propellers are equipped with a system for rotating

the blades. Such propellers are termed variable pitch propellers

(VPP), in contrast with the fixed pitch propellers (FPP) which were

used in the early ,tages of aviation development.
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0 The nonrotating propeller, Just

V like any body in an airstream, has

drag, which will be minimal if the
0j blades are set so their chords are

9 approximately parallel to the flight

V| P_ velocity. This blade position is

termed feathered.

Figure 25.2. Effect of As a rule, in aerodynamic calcu-

flight speed on blade lations the geometric characteristics
section angle of attack. are used in relative rather than

absolute form, i.e., in calculations

we use the quantities

D R D

Tnese quantities are often specified in percent. For each

propeller blade the characteristics are represented graphically as

a function of the relative radius (Figure 25.3).

The kinematic characteristics of the propeller make it possible

to descri.be the nature of the air flow around the blade and its

individual sections.

The propeller pitch H is the distance measured in the axial

direction which the blade element travels in a single revolution if

it advances in the surrounding medium considered as a solid body.

The propeller advance H is the distance which the propeller
a

actLlally travels in the air in a single revolution. As a result of

the compliance of the air, the propeller will travel in a single

revolution a distance which is, as a rule, not equal to the propeller

pitch. With the propeller operating under static conditions, the

propeller advance is equal to zero.
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The advance ratio X is the ratio of the propeller advance to

Its diameter

t. D

Since in a single revolution the

~ ~ - - - - -propeller travels the distance

rad RIH a= V/ns, where n ssthe number
41 43 of revolutions per second, then

" ".. (25.1)

- The absolute velocity W is

equal to the geometric sum of
-4141the axial velocity V. and the

II ... linear rotational velocity U. The

- 12 a linear rotational velocity for

42 43 0 5 4 48 4S 1 the blade section located at the

distance r can be found from the

Figure 25.3. Variation of geo- formula
metric characteristics along
blade length.

U=2rn,,

or, introducing the dimensionless radius, we have

U=aLa~r.

Then the absolute velocity for this section

W=IV2.f+U2=Dn, /fj,+22.

The inflow angle n is the angle between the absolute vciointy

and the blade rotaticn plane (see Figure 25.1). We see from the

figure that
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Using (25.1) and expressing the circumferential velocity in

terms of the distance to the axis of rotation and n., we obtain

tg --- (25.2)

For the section located at the distance 0.75 R

.=arctg 0

The section angle of attack = in is also a kinematic

characteristic. We see from the formulas obtained above that the

kinematic characteristics are functions of the advance ratio.

§25.2. Ideal Propeller Theory.

Propeller Operation in Shroud

Ideal propeller theory is approximate, is based on the generalj theorems of mechanics, and is not related with blade geometry;

therefore it cannot be used for design. However, this theory makes

it possible to estimate power and thrust and also permits clarifi-

cation of the effect of forward speed on propeller thrust and

efficiency.

The air is assumed to be an inviscid medium, i.e., there are

no friction losses. The airstream contracts along its entire length,

but the contraction is most intense in the region just ahead of the
propeller disk and immediately behind the disk. In practice we

can consider that the contraction region is bounded by the distance

+ D from the propeller plane of rotation.

We denote the velocity of the undisturbed flow ahead of the

propeller by V., the axial component in the propeller plane of

rotation by V =V + v,, the axial component far behind the propeller

by V2 = V. + v2 (Figure 2 5 .4). The induced velocities vI and v2 are

the deviations from the undisturbed flow velocity caused by propeller

operation.
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The magnitude of the thrust

can be calculated by applying

the momentum theorem in the

V, .projection on the propeller

/ leaxis of rotation

P:m(V2-V)=m%2  (25.3)

where m is the air mass flow

per second through the surface

Figure 25.4. Illustrating ideal swept by the propeller.

propeller analysis.
The propeller entrains the

air, forcing it to rotate. The rotational velocity of the air far

ahead of the propeller is zero. We assume, and this is not far

from true, that within the airstream passing through the propeller

the air rotates in each individual cross section following the solid

body law, with the angular velocities being different at different

cross sections. We denote the angular velocity in the plane of

the propeller by w1 and that far behind the propeller by 2'

The power, i.e., the energy imparted per second by the propeller

to the surrounding medium, can be calculated as the change of the

kinetic energy of the air flowing inside the body of revolution

_m-v' ,-J -!V2 (25.4)=-ff(v,-v.)+J2-!!L ,
2i' 2 2 22

where J is the moment of inertia of the airstream which has passed

through the propeller at a large distance from the plane of rotation.

It follows from (25.4) that the power imparted by the propeller

to the flow is expended on increasing the kinetic energy in the

translational motion parallel to the propeller axis and on creating

the kinetic energy of rotation, i.e., we can represent the propeller

power as the sum of the "axial" power Nax and the "circumferential"

powe'r Ncir*
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The magnitude of the "axial" power is

2 2

or, with account for (25.3),

2 "(25.5)

On the other hand, the magnitude of the "axial" power equals the

product of the propeller thrust P by the axial velocity V, of the

air in the propeller plane of rotation

N -=PV,. (25.5')

Comparing (25.5) and (25.5'), we obtain

~ V v + v..
* I=

2

But

12 V" 'u . V 1=V..±',:.

Then

21 !t" (25.6)

The "circumferential" power, expended by the propeller on

rotation of the air, is equal to the product of the angular velocity

W in the propeller plane of rotation by the torque Mt, which rotates

the propeller, i.e.,

Thus, the total power imparted to the air by the propeller can be

expressed in the form of the sum

IV=PV3+AIW.
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The power delivered by the engine to the propeller is defined

by the product of the torque Mt and the propeller angular velocity

of rotation 2L

(25.7)

This means that

M. =PV,+Mf.

Hence
PV,M((25.8)

We find the propeller efficiency by dividing the useful power

PVD by the power expended, defined by (25.7)

PV. PV. PV, V. PVI
M'Q PV1 M'Q V, MQ

Substituting herein the value of PVI from (25.8) we obtain

-V--. (25.9)

We call the first factor in the right side of (25.9) the axial

efficiency and the second factor the circumferential efficiency.

On the basis of the meaning of the quantities appearing (25.9),we

can draw some conclusions.

First, the smaller the air rotational velocity wI in comparison
with the propeller rotational velocity 9, the higher is the propeller

circumferential efficiency. We co'uld prevent entrainment of the air

into rotational motion by the installation of so-called guide vanes.

However this is not advantageous for the airplane, since along with

increase of the clwcumferential efficiency there would be reduction

of the prope2]er t'--.st owing to 'he friction forces on the surface
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of the guide vanes. A real increase of the circumferential effi-

ciency is achieved in installations with coaxial propellers, rotating

in opposite directions. In this case the rotation of the air behind
the first propeller is utilized usefully by the second propeller.

Second, the propeller efficiency can be increased by reducing
the velocity V1 in the propeller plane of rotation. However, we

must remember that reduction of the velocity VI always leads to
reduction of propeller thrust. This follows from (25.3) and (25.6).

Reduction of the axial efficiency is a sort of payment for the

creation of thrust. The higher the velocity v2, the larger is the

thrust. However the propeller efficiency will be lower, since the
propeller creates thrust by forcing air aft with a velocity exceeding

the inflow velocity. The axial efficiency may be increased by

increasing propeller diameter wit. simultaneous reduction of the

induced velocity. However the propeller diameter can be increased

only up to certain limits for structural reasons. Moreover, increase

of the propeller diameter is limited by increase of the profile

losses.

Thus, (25.9) can be rewritten in the form

l.= AqA , 1(25.9')

where

+ V2 P (25.10)
2V.

Since nax < 1 and ncir <i

no< 1 H IfKP <I, To

To clarify the influence of flight velocity V, on propeller

axial efficiency nax and thrust P, we shall analyze the effect of

flight velocity on the magnitude of the induced velocity v 2 .
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Substituting the thrust from (25.3) into (25.5'), we obtain

p, area F swept by the propeller, and velocity VI in the propeller

plane

m=QFV,,

then

N.5 =QPVjV2.

Hence 4

VIF

Considering that according to (25.6)

V=V. ,=V..-, V2

we obtain

'2V Qi"V2 (25.11)

We see from this relation that for constant power Nax the induced

velocity v2 varies monotonically with change of V and approaches

zero with unrestric',ed increase of the flight velocity V . Now,

using (25.10), we can draw a conclusion on the influence of flight

velocity on the axial efficiency.

For % = 0 we obtain nax= 0, since in this case no useful

work is performed; as V.+ - v2 + 0 and nax - 1, i.e., the propeller

axial efficiency increases with increase of the flight velocity,

approaching unity.
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-, ' (25.14)

Substituting this value of V1 into (25.10), we obtain the expression

for propeller axial efficiency in terms of disk loading factor

V.. 2 . (25.15)

Formulas (25.13) - (25.15) show that the velocities V1 and V2 increase

and the axial efficiency decreases with increase of the disk loading

factor, i.e., the nonproductive energy expenditures increase with

increase of the thrust.

Curves showing the dependence of the axial efficiency (na ),ax
ideal propeller efficiency (np = Tax i), and real propeller

efficency "real on fightx cir ra rple
efficiency (real ) on flight speed are shown in Figure 25.5(1) (we

see from this figure that at high flight speeds the primary role

is played by the profile drag, which defines the limit of ideal

propeller theory applicability).

Let us analyze the operation of a propeller in a shroud (Figure
i 25.6). We assume that the stream does not contract behind the

shroud and the stream velocity does not increase. Usually straighten-

ing vanes are installed in the shroud behind the propeller to

eliminate rotation of the air in the slipstream. As in the preceding

problem, we assume the air to be inviscid and neglect friction losses.

We find the propeller thrust from the momentum change law

P=n(V-V.), (25.16)

where m is the air mass flowrate.

The power if found as the difference of the airstream kinetic

energies ahead of and at some distance behind the propeller (sections

Footnote (1) appears on page 299
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Figure 25.5. Variation of axial efficiency
and efficiency of ideal and real propellers
with flight speed.

plane 0£ rotation

iz

Figure 25.6. Illustrating analysis of shrouded
ideal propeller operation.

I and II in Figure 25.6)

• 2 2 2 (217N mVl mnV. m

Now we can calculate the axial efficiency nsh of the shrouded

propeller

Substituting the thrust from (25.16) and power from (25.17),

we obtain
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m(V - V..) V.. 2w
V,+V..(25.18)

2

In order to compare the axial efficiency nax of the free

propeller and that nsh of the shrouded propeller, we divide nsh

'by nax' using (25.18) and (25.10)

(25.19)

Since VI > V, it follows from (25.19) that n >a

Consequently, the efficiency of the shrouded propeller is

higher than that of the free propeller. However, this difference is

significant only for low freestream velocities V. The larger V ,

the smaller this difference will be. Therefore, operation of the

propeller in a shroud is used only when V. is small, specifically

on hydrogliders, aerosleds, and recently on certain vertical takeoff

vehicles.

§25.3. Isolated Blade Element Theory

In isolated blade element theory the propeller blade is

considered as a wing and the following assumptions are made:

1. The blade element operates alone (neighboring elements have

no effect on its operation). This assumption makes it possiole to

examine the blade element as a wing element of infinite span, i.e.,

we can neglect induced drag.

2. The action of the flow on the blade element traveling

along a helical line is the same as that on an element traveling

translationally with the same absolute velocity.

We use two concentric surfaces with center at the axis of

rotation to cut out a blade element of length dr at the distance r

2811
EID-HC-23-7?071



from the axis of rotation (Figuie 25.7). The absolute velocity

of the air relative to the blade is defined by the relation obtained

aboved.

Then we have the following expression for the elementary blade

element lift force

dY C, bdr= QD2n;.( ++"bd,-
2 2 (2~7)d

Since

04CJS b=;D; dr=-D r,

where

Figure 25.7. Forces acting on we obtain
blade element.

-- eDr 2 QJ2+n 2j2)bdr
44

The elementary lift force dY is perpendicular to the absolute

velocity W.

We have similarly for the elementary drag of the blade element

dX =-SLi QD 4 2 2+ 2)~

It is obvious that the sum of the projections of dY and dX on

the axis of rotation equals the thrust dP created by the blade element

dP =dY cos P, - dX sin .,
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I •
or, subsbituting the values of dY and dX, we obtain

dP e- 'jt L2-+ xQ+ (c cos P. - c sin 3 ) bdr. (25.20)

The sum of the projections of dY and dX on the plane of

rotation, multiplied by the linear velocity of rotation, is equal

to the elementay power dN. Since w = 2wns, we have

dN=(dY sin P,+dXcosP.)2urxr,

or substituting the values of dY and dX and considering that r = TD/2,

we obtain

4 (25.21)

Integrating (25.20) and (25.21) in the limits from 0 to 1,

where r0 is the dimensionless radius of the propeller hub, we

obtain the expressions for finding propeller thrust P and power N
I

p= _eL. QD": 0.([-+7(@Cuos p,'- c, sIn p,)b'dr (25.22)

V=-!,mD,r n Q'+'t7)(e, sinp.+C, cosp )i;dr, (25.23)

where k is the number of propeller blades.

Isolated blade element theory does not permit determining

sufficiently exactly the values of P and N, since this theory does

not consider the influence of tip effects, which are similar to the

tip effects on the airplane wing. However, this theory makes it

possible co obtain the basic similarity laws which can be used for

testing propellers and in selecting propellers for an airplane.

Propeller thrust and power with account for tip effects are

determined with the aid of propeller vortex theory, developed by

Zhukovskiy. In accordance with this theory the propeller blades are
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replaced by a system of bound and free rotating vortices. This

technique makes it possible to construct more precisely the velocity

field and therby define more correctly all the kinematic character-

istics and operating regime of the propeller.

§25.4. Propeller Aerodynamic Similarity Conditions

and Aerodynamic Characteristics

Various theories make it possible to determine with some degree

of precision the basic propeller characteristics - thrust, power,

and efficiency. However, the final conclusion on the magnitude of

the propeller parameters is made on the basis of experiment, since

all the factors influencing propeller operation under actual conditions

cannot be taken into account in the theoretical calculations.II
Experimental studies are conducted in wind tunnels on models

whose geometric dimensions are usually smaller than those of the

full-scale propellers. Therefore the need arises to find the

conditions under which geometrically similar propellers can be

considered aerodynamically similar. We need aerodynamic similarity

criteria in order to be able to convert from model to full-scale

parameters in a valid fashion.

The similarity criteria can be obtained from analysis of the

theoretical relations obtained, for example, with the aid of

isolated blade element theory. The formulas (25.22), (25.23) for
determining thrust and power, obtained with the aid of this theory,

contain the quantities i and 5, which are the same for geometrically
similar propellers. The inflow angle 0in , which appears in the

trigonometric functions, depends on the propeller advance ratio X

and is defined by (25.2)

Pn=arctg nr

For the same b.Lade incidence angles 4, the aerodynamic coefficients

c and cx , other conditions being the same, will depend on the angle
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of attack a, which if we neglect tip effects is equal to the

difference of the incidence and inflow angles, i.e., a = =in

This means t*hat the angle of-attack, and therefore the lift and
drag coefficients as well, of the blade element depend on the

advance ratio X.

Thus, the integrals in (25.22) and (25.23), being dimensionless,
are in the final analysis functions of the advance ratio and these

expressions can be written as

P=f1 1)en.D%

Denoting fl(A) = a and f2(A) = 0, we obtain

(25.24)

N(25.25)

The coefficients a and 0 are called respectively the thrust

and power coefficients.

We can obtain the following expression for the propeller

efficiency by using (25.1)

PI'. aQIn 4inD

or

(25.26)

Since the thrust coefficient a and the power coefficient 0
depend on the advance ratio X, the propeller efficiency is also a

function of the advance ratio.

Consequently, the condition for aerodynamic similarity of
geometrically similar propellers is equality of the advnce ratios
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.I
?o Of thes propellers. Here we must recall that the aerodynamic

coefficients cy and c kalso depend on the friction forces and

-elasticity of the air. Therefore equality of the Reynolds and Mach

numbers for the actual and scale propellers is also a necessary

*condition for complete aercdynamic similarity.

If the Reynolds number is not large, the friction forces will

not -depend on the air-viscosity and will be proportional to the

squares of the relative velocities (regime of self-similar flow

around the blades with respect to Reynolds number). In this case

equality of the Reynolds numbers for the two similar blades is not

required.

Theory and experiment show that with increase of the flight

speed at constant rpm, and this means with increase of the advance

-ratio X, propeller thrust decreases.

The variation of the power transmitted by the propeller from

the engine to the air is approximately the same as that of the

thrust. The graphical dependence of the thrust a and power b

coefficients on the advance ratio X for fixed blade incidence angle

is called the propeller operating characteristic (Figure 25.8).

In Figure 25.8 we can identify

three zones, corresponding to

qualitatively different propeller

'3 operating regimes. In the region

of X values corresponding to the

A B segment OA on the abscissa axis,

the thrust is positive. At the

ends of this segment the efficiency

Figure 25.8. Propeller operating is zero, since at the coordinate
characteristics with origin the translational velocityconstant.

is zero and at point A the thrust

is zero, i.e., in both cases the propeller does not perform useful

work.
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the segment AB of the abscissa axis corresponds to the regimes

in which the thrust isnegative but pbwer is positive. These are

called the negative thrust regimes.

The regimes corresponding to negative thrust and power are

located to the right of point B. Here the propeller is rotated by

the airstream anu does not require energy from the engine. These

are termed autorotation regimes.

The propeller characteristics depend on the blade incidence

angle. Therefore in laboratory propeller testing a series of

operating qharcteristics is recorded at different incidence angles.

For convenience in use for design purposes, the curves of power

coefficient and efficiency versus advance ratio X for different inci-

dence angles * (the curves for the thrust coefficient f are not pre-

sented since they are rarely used in design) are presented on a single

plot, called the propeller aerodynamic characteristic (Figure 25.9).

In calculating airplane

- -takeoff distances, we must know

• how the propeller thrust varies

4-- as a function of velocity

i - - during the ground run, and

4- therefore special curves are

-1 plotted of the thrust coeffi-

/7 cient for different propeller
" / ~operating conditions a (

45 for small values of the advance

- - ratio (Figure 25.10).

4~42~4G4S540 8 4346W 40 ,#S ?=&I#
0 0,S 40 1,$ 2,0 2,S -,# 45 4,0 4,S1 f,#S A

Figure 25.9. Propr1le r
aerodynamiC 61ha'r'istics.
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Figure 25.10. Propeller thrust characteristics.

§25.5. Mutual Influence of Propeller and Airplane.

Influence of Air Compressibility on Propeller Efficiency

The influence of the propeller on. the airplane shows up in

the fact that the portion of the wing behind the propeller is located

in a region of velocities which are greater than the flight velocity;

therefore the drag and lift on this portion of the wing increase.

Particularly marked is the lift increase at low flight speeds. In

this case the velocity behind the propeller exceeds considerably

the airplane flight speed.

Denoting the wing area in the propeller slipstream by Sslip and

that outside the slipstream by Sou and the corresponding lift

forces by Yslip and Yout, we obtain

We denote the lift coefficient with account for the propeller

influence by cy slip' Then expressing the forces in terms of the

coefficients, we obtain the expression

_ 2  VQ V

C1 -OA 2. S-=2- 291 !L221,960
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or, considering that Sou. S -s3lip, where S is the wing area,

we have

' - -

According to (.5.13)

I . V2=V. II -+a.

Then

Le,. , = 's-". (25.27)

In (25.27) no account is taken for the angle of attack reduction
V at the wing sections behind the propeller. Therefore the experi-

mentally determined lift force incement is less than that given by

(25.27). Figure 25.11 shows curves of A-y slip versus the disk

loading factor B for different slip = Sslip/S, plotted on the

basis of experimental data.

The wing drag increase behind the propeller is usually taken

into account by reducing the propeller thrust by the magnitude of
the drag increase, i.e., in place of the propeller thrust developed

in the presence of the body behind the propeller we introduce into

the aerodynamic calculation the effective thrust

4 f7
OS -- - '" I where AQ is the body drag inerease

41 owing to the propeller slipstream.

42 The corresponding effective
efficiency is

Figure 25.11. Effect of propeller
slipstream over wing on lift
force.
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The inflwnce of the engine nacelle on propeller operation

shows tip in partial retardation of the airstream ahead of the nacelle.

The larger the nacelle transverse dimension, the lower the velocity

will be in the propeller rotation plane. The result of this is

reduction of the velocity V2 at a large distance from the plane of

rotation, and along with this the propeller thrust and efficiency

decrease.

The influence of the engine nacelle is usually accounted for

by a correction factor, used to multiply the propeller efficiency.

The aerodynamic characteristics are usually plotted with

account for the mutual influence of the propeller and the engine

nacelle with which the propeller tests were conducted in the wind

tunnel. Therefore the propeller efficiency found from the

characteristic curves already accounts for the mutual influence of

the engine nacelle and the propeller on the model. Consequently,

in determining the correction to the propeller efficiency we must

consider the differences in the relative dimensions of the full-

scale engine nacelle and the model nacelle.

The compressibility of the air begins to have an effect at

high flight speeds. For the propel.er the maximal velocity is

observed at the blade tips, where the absolute air velocity relative

to the blade is

Da fA-2O.I +/-21 12-

and

We know that the coefficients cy and cx increase with increase

of the velocity (M.) for subsonic flow conditions. The rate of

increase increases with approach of Mo to Mcr. When local supersonic
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velocities and shock waves. appear on the blade, the dijg tfickeaies

markedly and the propeller efficiency decreases. Sofiii velocfties

at the propeller blade tips Are reached at quite moderate fligh

speed&. Fof example, for the AV-68i propeller on the i-18 airplane

at v. = 630 km/hr, H = 8000 mi n = 1075 rpm, and D 4.5 m we have:

flight speed 175 m/sec;

linear rotational speed at the bldd6 tips (Absolute) 254 m/sec;

resultant velocity of blade tips 310 m/sec;

blade tip Mach number 1.01.

We note that shock stall is possible not only at the blade

tip but also in the root region (Figure 25.12), in spite of the

fact that the resultant velocity in this region is lower than that

at the tip because of closeness to the axis of rotation. This is

explained by the fact that the relative blade thickness is very

large (rgehing 30% or more) in the root region, and in this region

the shock stall occurs at comparatively low Mach numbers.

The marked reduction of the

efficiency because of the onset of

shock stall is one of the basic

reasons for not using propellers

on high speed airplanes.

The propeller is selected for

- each type of airplane in the
design process. The propeller

diameter is selected on the basis

Figure 25.12. Regions of of the most characteristic operating
shock stall on blade. regime. The design condition i ay

be the flight condition at maximal

speed, maximal range, takeoff, and so on. For transport airplanes

the design regime io most frequently that of maximal range.

I-
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In selecting the propeller type and diameter, we must know the

engine, power and rpm at the design flight conditions, i.e., at the

design altitude-and flight speed. In the design process we select

the .propeller type and diameter to ensure a propeller efficiency

close to the maximal value in flight at the design conditions. The

propeller efficiency may be lower in other flight conditions.

The prop diameter is determined approximately as follows.

Excluding the diameter D from (25.1) and (25.25), we have

Nmt!

In this relation all the quantities other than the power coefficient

and the advance ratio X must be given. On the propeller aerodynamic

characteristics (see Figure 25.9) the relationship between X and a

is represented in the form of a fifth degree parabola. On this

parabola we-find the point corresponding to the maximal efficiency,

and after finding for this point the value of I we find the

propeller diameter from (?5.1)

If the parabola lies far from the maximal efficiency values,

the propeller rpm must be changed or propellers of a different

series must be investigated.

This method yields the prop diameter in the first approximation.

More exact methods which make it possible to account for the

influence of compressibility, mutual influence of the prop and air-

plane, and so on are presented In the specialized literature.

§25.6. Propeller Operation in the Negative

Thrust and Autorotation Regimes

The negative thrust regime may be observed with the airplane

in a dive, when as a result of the airplane speed increase along

FTD-HC-23-720-71 295



its trajectory the blades are subjected to flow at a negative angle

oi attack (Figue 25.1). The negative thrust regime is also

created during rollout of the airplane after landing. During the

approach, when the landing sjeed is reached the power levers are

retarded to the flight idle Position And the blade incidence angle

decreases to values onthe order of 0.20-0.30 rad. If the.power

lever is moved to ground idle immediately after touchdown,'the

incidence angle decreases to zero and a large negative thrust is

created.

In casd of failure of an engine and of the feathering system

in flight, the prop control system drives the prop to small

incidence angles. Large negative thrust is created, exceeding by

two or three times the positive thrust with normal engine operation.

In this case the prop continues to turn under the action of the

approaching airstream.

The f asons for autorotation can be clarified by analyzing the

nature of the forces acting on the prop blade when it is at compara-

tively small incidence angle and has high axial velocity (Figure

25.14). The blade angle of attack is negative. The resultant

aerodynamic force R, equal to the vector sum of the lift Y and the

drag X, when projected on the plane of rotation yields the component

F directed in the direction of rotation of the prop. The force F,

multiplied by its arm relative to the prop hub axis, yields a moment

which accelerates the prop in the previous direction.

Consequently, the aerodynamic forces not only do not retard

the prop, they begin to accelerate it and prop auro.otation begins.

In the autorotation regime the prop takes energy from the kinetic

energy of the airplane, i.e., it has a retarding action. The power

required to rotate the prop with the engines off is very large. 3ince

the engine compressor and turbine are rotated along with the prop.

The rpm and retarding action will be maximal at incidence

angles 0.17 - 0.26 rad (10-150). At larger and smaller incidence
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Figure 25.13. Prop blade Figure 25.14. Prop blade
operation in negative thrust operation in autorotation
regime. regime.

angles the drag force and rpm decrease and the prop will stop.

Feathering systems are used to reduce prop drag in case of

engine failure on airplanes. The feathering systems drive the

props to the feathered position, in which the prop d2ag becomes

minimal and the prop does not turn. The automatic system is

activated when the engine power drops off in case of engine failure.

Review Questions

1. Explain the necessity for using prop blade geometric twist.

2. Why is the prop efficiency always less than one even in an

inviscid medium? How can the prop efficiency be increased under

these conditions?

3. Under what conditions can negative thrust be obtained if

the direction and speed of rotation remain unchanged and the blade

incidence angle is not negative?
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4. How will the blade incidence angle and angle of attack

change during airplane takeoff acceleration for constant prop

rotational speed?

Problem

1 On the prop aerodynamic characteristics (see Figure 25.9)

indicate all the variable pitch prop (N = Const, n - const) and fixed

pitch prop (4 = const) regimes if the props operate in tha regimes

= 0.315; X # '.05, respectively. For which of these props will

the range ot adjance ratio values be larger for efficiencies

exceeding 08?

Answer

The horizontal line 0 = 0.315 corresponds to the variable

pitch prop regimes in Figure 25.9.

The line for * = 0.76 rad corresponds to the fixed pitch

prop operating regimes.
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FOOTNOTES

1. on page 282 As can be seen in Figure 25.5, at high flight
velocities the profile drag plays a decisive
role, which predetermines the limits of
applicability of the ideal propeller theory.
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CHAPTER XXVI

.ERODYNAMICS OF HELICOPTER MAIN ROTOR

126.1. Main Rotor Operation

In contrast with the airplane propeller, the helicopter rotor

not only performs the functions of a propulsor but also equalizes the

helicopter weight in flight (therefore it is termed the lifting rotor).

At the same time the helicopter rotor provides flight stability and

controllability and also provides for safe descent in case of engine

failure.

Depending on the aerodynamic arrangement of the helicopter, there

are many different lifting rotor designs which make it possible for it
to perform its varied functions.

In order to provide maneuverability, the main rotor thrust vector

must vary over a wide range, both in absolute magnitude and in direc-

tion. This problem can be solved in various ways. However, the most

widely used rotors are those in which the blade plane of rotation can

change its attitude with respect to the shaft axis. This capability

is provided by hinged mounting of the main rotor blades to the hub and

the use of a special mechanism, the so-called tilt control, first

suggested in 3)910 by Academician B. N. Yur'yev.
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Figure 26.1 shows a schematic

of the hinged mounting of a main
rotor blade on the hub. The horl-
zontal hinge 1 provides for vari-

ation of the blade inclination with
respect to the plane of rotation.

Moreover, the horizontal hinge results
Figure 26.1. Main rotor blade in zero bending moment at the blade
mounting: 1 - horizontal
hinge; 2 - vertical hinge; root relative to this hinge. During
3 - axial hinge; 4 - hub; 5 - rotation the blade is subject to the
shaft; 6 - blade. action of the aerodynamic force Y and

the centrifugal force Fcent (Figure

26.2) and-automatically takes an equilibrium position in which the

resultant force vector F passes through the hinge axis.

Figure 26.2. Bae equilibrium position.

The vertical hinge 2 relieves the root part of the blade of the

moment created by the drag and centrifugal forces.

As a result of the presence of the horizontal and vertical hinges,

the rotor blades perform continuous oscillatory motions in flight under

the action of the moments, which vary in magnitude. The main rotor

design includes stops which limit blade rotation, for example, the

stops which limit blade droop when the rotor is stopped.

The axial hinge 3 makes it possible to change the blad- incidence

angle in flight in order to vary the thrust force.

The tilt control controls the blade incidence angles on the

operating rotor as a function of their position, which is characterized

by the azimuth angle € (Figure 26.3).' If the blade incidence angles
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-Figure 26.3. Blade azimuthal Figure 26.4. Forces acting on
positions, helicopter in flight.

are increased for values of # close to 0 and reduced for values of *
close to w, then as a result of lift force variation the blade plane
of rotation is tilted forward, the rotor thrust force T creates the
horizontal component P, and the helicopter begins to move forward
(Figure 26.4). If we reduce the blade incidence angles for values of
close to 3w/2 and increase them for * close to w/2, then the heli-

copter begins to move to the right.

A schematic of the tilt control is shown in Figure 26.5. Tilting
of the outer bearing ring 1 with the aid of the control stick 2 causes
tilt of the inner ring 3, which rotates together with the blades and
is connected with them by the rods 4. Displacement of the rods 4
leads to corresponding cyclic variation of the blade incidence angle.

The collective pitch lever 5 can be used to change the incidence
angle by the same amount simultaneously for all the blades (regardless
of their azimuthal position), which is achieved by varying the magnitude
of the thrust force without altering its direction.

To obtain more uniform main rotor operation, the number of blades
is usually more than two. The blades have rectangular or trapezoidal
planform with small taper ratio. As a rule the blades are twisted to
reduce the incidence angle toward the blade tip.
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Figure 26.5. Tilt control: 1 - outer bearing
ring; 2 - control stick; 3 - inner bearing
ring; 4 - rods; 5 - collective pitch lever.

§26.2. Effect of Oblique Flow on Rotor Aerodynamics

The helicopter main rotor blade plane of rotation forms some
angle with the flight direction during flight. This angle is called

the rotor angle of attack. In conventional flight the angle of attack
iz negative (Figure 26.6). For angles of attack a = %/2, corres-
ponding to helicopter vertical climb and descent, the helicopter rotor

encounters the air in the axial direction. For a which differs from

+ v/2 the rotor operates in the so-called oblique flow regime. We
note that the airplane propeller may also operate in this regime; how-

ever, the angle of attack of the airplane propeller in this case is

very close to -w/2.

Oblique flow leads to change of the rotor blade operating

conditions with variation of the azimuth angle i. Let us resolve the

303
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,° flight velocity V into the axial

/:component V, sin a and the component
4? * V i CO4 in the plane of rotation

-- (see Figure 26.6).

Oblique flow through the rotor

can be represented as the sum of the

axial (with velocity V sin a) and

transverse (with velocity V. cos 4)

Figure 26.6. Main rotor angle flows. The tangential velocity Ut
of attack. Axial and trans-
verse flow thiough rotor. at some blade element (Figure 26.1)

owing to the transverse flow is
equal to

U,="r+V.cosGslUt. (26.1)

r WI.

Figure 26.7. Tangential velocities on main
rotor blades.

The velocity Ut depends on the azimuthal position of the element.
Figure 26.7 shows the variation of Ut along the blade for * a w/2 and

*u 3w/2. We see from the figure that on the segment 001 the blade
elements encounter the air with their trailing edge. Consequently,

a reverse flow zone is obtained in the case of oblique flow over the
rotor. It can be shown that this zone is a circle (shaded in the

figure). In the reverse flow zone the lift force on the blade elements
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has a direction opposite the direction of the lift on the elements

locateidoutside this zone, i.e., negative thrust is developed in this

zone. the higher the velocity V. cos a, the larger is the reverse
fiow zone and the more mxarkedly the rotor effectiveness decreases.

The formation of the reverse flow zone is one of the factorsi limiting

helicboter flight speed.

The blade element absolute velocity

W:=y1V VSfj 2 a+(r + V.Cos asinjf.

The inflow angle at the blade element is defined by the expression

tg V. eisa
wr+ V. cos a s174

Hence we set that the resultant absolute velocity and inflow

angle for a given blade element depend on the azimuth angle i. The

resultant velocity reaches its maximal value at = /2 and minimal

value at 4 = 3w/2. The inflow angle is minimal at n = /2, and reaches

a maximum at w = 3/2.

The reduction of the inflow angle, as the azimuth angle 4 varies

from 0 to n/2, causes increase of the blade element angles of attack.

since in this case there is an increase of the absolute velocity,

the lift force also increases with variation of * from 0 to n/2.

The lift increment, in turn, leads to upward rotation of the blade

about the horizontal hinge (the so-called flapping motion). The blade

flaps upward in that period when it moves against the transverse flow.

Downward blade flapping motion is obtained when the blade travels in

the direction of the transverse flow.

As a result of the flapping motion, an additional axial velocity

component Vfl appears on the blade elements; therefore the blade angle

of attack ar decreases for values of 4 close to w/2, while it increases

for values of * close to 3r/2 (Figure 26.8). At high flight speeds
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the angle of attack increase at

* = 3W/2 can become significant

and flow separation takes place.

I- The flow separates from the

. blades at that moment when they

Tn 2u~ra ocupy azimuthal positions

close to *=3wr/2 (zone A in

Figure 26.7).

_T Because of flow separation,

and also because of the presence

Fiur di reion of there flo
Figure 26.8. Azimuthal variation of the region of reversed flow
of blade section angle of attack over the blade, the rotor plane
because of blade flapping motion. of rotation "tilts" in the

direction of W/2. The

appearance of flow separation at high speeds is also a factor limiting

helicopter flight speed.

§26.3. Rotor Dynamic Similarity Conditions

in Forward Flight

The problems of main rotor modeling are of great importance.

Oblique flow through the rotor, the very complex blade motion in which

flapping motion about the horizontal hinge is also imposed on the

rotational motion, the lead-lag motion about the vertical hinge, the

cyclic variation of the incidence angle as commanded by the tilt

control - all this complicates not only the theoretical analysis of

the vain rotor but also its experimental study. If we take into

account the deformational motions of the blade as it bends and twists

(the deformations must be considered because of the large rotor diam-

eters and the comparatively low stiffness of the rotor blada8), and

a3:o-the necessity for ensuring similarity of the blade inertial

characteristic, since their motion takes place with acceleration,

the entire complexity of the problem of modeling the helicopter main

rotor becomes clear.
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Let us examine very briefly the dynamic similarity conditions

for lifting rotors. As always, geometric similarity of the rotors

must be satisfied first of all in order to obtain dynamic similarity.

In comparison with conventional propellers, here we must satisfy

several additional requirements with respect to similar positioning

of the blade hinge axes, and also similarity of the tilt control sys-

tem elements.

The kinematic conditions for dynamic similarity of rotors in

forward flight can be obtained by examining separately rotor operation

with purely axial flow and with purely transverse flow.t
in the axial direction the rotor operates with the velocity

V sin a. We have for the advance ratio

V. sin (26.2)
aD

On the basis of the arguments of §25.4, we conclude that for
aerodynamic similarity of the rotor it is necessary to observe equality

of the rotor advance ratios.

In the case of purely transverse flow over dynamically similar

rotors, it is obvious that the velocity patterns must be geometrically

similar. Specifically, the blade reverse flow zones must be commen-

surate with the disks, which leads to the following relation (see

Figure 26.7)

R o=€sa ==cnst. 
(26.3)

The quantity v is termed the main rotor operating regime characteristic.

It shows what part of the blade operates under reversed flow condi-

tions (if P = 0.2, this means that 20% of the blade operates with

reversed flow). Large values of V lead to rotor efficiency loss and

vibrations. In addition to equality of the advance ratios, equality

of the U characteristics must be satisfied for dynamic similarity of

rotors operating in forward flight.
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The main rotor operating regime characteristic ji and the advance
:r'tio A are connected by the relation

L_ _V.Cosa V.sia -cis o.
= _ IX _.(26.14)

We see from (26.4) that in place of equality of p we can take
equality of the angles of attack a as the additional condition for
.dynamic similarity.

Thus, while for rotors in axial flow the condition for dynamic

similarity involves equality of the advance ratios, in the case of

forward fljgpt equality of A and p or of A and a must be ensured for
.dynamic similarity of the rotors.

For the main rotor in forward flight the blade incidence angle

(pitch) usually varies as a function of blade azimuthal position.
This pitch yariation is specified 1y the tilt control deflection angle.
Along with geometric similarity of the blade retention and the tilt

control elements, to ensure identical blade pitch variation we must
obviously ensure equality of the tilt control deflection angles.
The requirement for identity of blade cyclic pitch change complicates

markedly the modeling of rotors and the use of data from flow testing

of a series of rotors.

In practical calculations, we normally use rotor aerodynamic

characteristics obtained under forward flight conditions with fixed
blade pitch, with the pitch not varying as the blade moves in azimuth.

Theory shows that the constant-pitch rotor is dynamically similar to

a rotor with varying pitch if their angles of attack differ by sore
quantity defined by a special calculation (this question is examined

in detail in the specialized textbooks). Such a rotor with constant
pitch but set at some different angle of attack is termed the

equivalent rotor. The introduction of the equivalent rotor concept

makes it possible to make extensive use of the results of flow
testing of a series of lifting rotors.
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To ensure dynamic similarity of lifting rotors, it is necessary

to observeequality of the Reynolds numbers

-Re=--.

For the lifting rotors, just as for conventional propellers, there is

a self-similar regime with respect to Reynolds numbers.. if both rotors

operate in the self-similar region, there-is no. need to observe equality

j of. the Reynolds numbers.

For high Mach numbers it is necessary to ensure equality of the
Mach numbers M -

Since lif ting rotQrs have very long and flexible blades (bending

is measured in tens of centimeters and twisting reaches 0.05-0.1 rad),

for their similarity it is necessary to satisfy the deformation

similarity condition. This condition is satisfied with equality of

the Cauchy numbers

where E is the modulus of elasticity of the blade material.

§26.4. Lifting Rotor Aerodynamic Characteristics

Let us analyze the aerodynamic characteristics of the main rotor.

Assume a main rotor operates at the angle of attack a (Figure 26.9).
The resultant aerodynamic force R acting on the rotor can be resolved

into components in the wing or body coordinate systems.

In the body coordinate system we obtain the component T perpen-

dicular to the plane of rotation - the rotor thrust, and the compon-

ent H in the rotor plane of rotation - the rotor longitudinal force.

In the wind coordinate system Y is the rotor lift and X is the

rotor propulsive force. For simplicity we shall not consider the

lateral components of the force R, which are associated with tilting

of the rotor plane of rotation in the direction of the azimuth values
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* r 3/2 (see 126.2). These com-

ponents are considered in the solu-

-tion of helicopter flight stability

and controllability problems.

In accordance with the aero-

F- 2 dynamic similarity laws, we can write
Figure 26.9. Projections of the expressions for the components
main rotor resultant aero-
dynamic force on directions of the force R
of wind and Pody axes. I

H =cll -el,Rfa~
S2

'=" 2

Here cT, cH, Cy, and cx - the coefficients of the corresponding

forces - are dimensionless quantities which depend on the rotor dy-

namic similarity parameters under forward flight conditions.

Using the equivalent rotor concept, in approximate calculations

we consider that the aerodynamic coefficients are determined by the

value of the advance ratio A, angle of attack a, Reynolds and Mach

numbers, in addition to the basic geometric parameters (number zb of

blades, solidity a, relative profile thicknc. , blade incidence

angle *).

The expression for the torque on the rotor shaft is

where cmt is the torque coefficient.

The set of coefficients CT, CH, and Cmt in the body frame or

Cy, cx and Cmt in the wind frame defines the aerodynamic efficiency

of the lifting rotor and are called its aerodynamic characteristics.
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The aerodynamic coefficients in the two coordinate systems are

connected with one another by the relations (see Figure 26.9)

cr=c, cosa-lc~slna;
c-----cosa-cusina.

in calculations of helicopter flight characteristics, we frequently

use dimensionless coefficients, obtained by dividing the above coef-

ficients by the solidity a

* ±ck2(,-R)2

SH

TeaR 2u-R)2

2 .r-R2 (-RP

C 2  X
2 -i (.R9'mx ___________

* !

The solidity a is the ratio of the total area of the blade

projections on the plane of rotation to the area of the circle

described by the blade tips.

REVIEW QUESTIONS

-,1. Explain the purpose of the three-hinge helicopter main

rotor blade mounting.

2. What helicopter operating conditions are accounted for by the

rotor operating regime characteristic v?

3. What helicopter rotor similarity criteria are used in modeling?
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PROBLEMS

1. Find the bouhdary shape and location of the zone of reversed

fiow over helicopter blades.

Solution. At the boundary of the reversed flow zone the

magnitude of the velocity ,component Ut, defined by (26.1), equals

zero. Then

Wr+V. cossSI 0. (a)

ConVerting to Cartesian coordinates (see Figure 26.7), we obtain

After substitution into (a) and algebraic transformations, we have

.z']-(g-zV"Cosa = ,=V. Cos a \2
=2+ ) +V (b)

Equation (b) describes the boundary of the reversed flow zone,

which is a circle with diameter Vcos. and center at the point with

the coordinates (0; Vco,=)
2w

2. Find the angle of attack of a helicopter main rotor if the

advance ratio x = 0.5 and rotor operating regime characteristic v = 0.2

are known.

Answer:

a=arctg L--.0,92 rad.
-it
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SYMBOL LIST

Russian Typed "Matning

ilaM lam laminar
TYP turb turbulent

TP fr friction

ci' critical

Bu upper

H Z lower

F! f forward

3 a aft

HP st stall
A p pressure

MeCT loc local

CP av average

FOji head head

XB tail tail

nPOcH1 profile profile

KOHTYPa contour contour
HC incom incompressible

C)H com compressible

T t turbulent

B w wave
OHLQ t tip

H r root

HCT true true

A it left

n rt right

r root (centerplane)

HP w wing

CoLl sec section
HB opt optimal
CH yaw yawed

iP str straight
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Russian Meanibg

CTP sw swept
TPf~CI{ buffet buffet

f flap

3 f flap

flPot profile prof

14i.HP is.w isolated wing
HOC nose hose

LI~icyl cylindrical

MWAH Mid midsection
HOPM* aft aft
AOH base base

T b body

08 ov oval
BX in inlet

CM wet wetted
4) f fuselage

3 e effective
P c control surface
onl t tail

3a aileron

LU h hinge

P.8 el elevator
CaM air airplane
HHT mnt -interference

K wi wing ti

M3 is isolated

B.0 vt vertical tail

rAnac engine nacelle
34'eff effective
Kc cone

KOH c cone
nl in inflow
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Russiani TY0ed Meaning

C S, second

oC ax axial

OHP cir circumferential

K t turning,

B p prop.

AACOM real real
sh shrouded

96A slip slipstream

HeO6f J out outside

rOJ1H res resultant

L16 cent centrifugal

B3 fi ffapping

b blade
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